No Arabic abstract
The axion is a well-motivated cold dark matter (CDM) candidate first postulated to explain the absence of $CP$ violation in the strong interactions. CDM axions may be detected via their resonant conversion into photons in a haloscope detector: a tunable high-$Q$ microwave cavity maintained at cryogenic temperature, immersed a strong magnetic field, and coupled to a low-noise receiver. This dissertation reports on the design, commissioning, and first operation of the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a new detector designed to search for CDM axions with masses above $20$ $mumathrm{eV}$. I also describe the analysis procedure developed to derive limits on axion CDM from the first HAYSTAC data run, which excluded axion models with two-photon coupling $g_{agammagamma} gtrsim 2times10^{-14}$ $mathrm{GeV}^{-1}$, a factor of 2.3 above the benchmark KSVZ model, over the mass range $23.55 < m_a < 24.0$ $mumathrm{eV}$. This result represents two important achievements. First, it demonstrates cosmologically relevant sensitivity an order of magnitude higher in mass than any existing direct limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, HAYSTAC has demonstrated total noise approaching the standard quantum limit for the first time in a haloscope axion search.
We describe in detail the analysis procedure used to derive the first limits from the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a microwave cavity search for cold dark matter (CDM) axions with masses above $20 mutext{eV}$. We have introduced several significant innovations to the axion search analysis pioneered by the Axion Dark Matter eXperiment (ADMX), including optimal filtering of the individual power spectra that constitute the axion search dataset and a consistent maximum likelihood procedure for combining and rebinning these spectra. These innovations enable us to obtain the axion-photon coupling $|g_gamma|$ excluded at any desired confidence level directly from the statistics of the combined data.
We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been probed by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain $g_{Ae}$, to be lower than $1 times 10^{-12}$ (90% CL) for mass range from 1 to 40 keV/c$^2$, and set the best limit to date as well.
We report on the first results from a new microwave cavity search for dark matter axions with masses above $20~mutext{eV}$. We exclude axion models with two-photon coupling $g_{agammagamma} gtrsim 2times10^{-14}~text{GeV}^{-1}$ over the range $23.55~mutext{eV} < m_a < 24.0~mutext{eV}$. These results represent two important achievements. First, we have reached cosmologically relevant sensitivity an order of magnitude higher in mass than any existing limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, we have demonstrated total noise approaching the standard quantum limit for the first time in an axion search.
We report on the results from a search for dark matter axions with the HAYSTAC experiment using a microwave cavity detector at frequencies between 5.6-5.8$, rm Ghz$. We exclude axion models with two photon coupling $g_{agammagamma},gtrsim,2times10^{-14},rm GeV^{-1}$, a factor of 2.7 above the benchmark KSVZ model over the mass range 23.15$,<,$$m_a ,$<$,$24.0$,murm eV$. This doubles the range reported in our previous paper. We achieve a near-quantum-limited sensitivity by operating at a temperature $T<h u/2k_B$ and incorporating a Josephson parametric amplifier (JPA), with improvements in the cooling of the cavity further reducing the experiments system noise temperature to only twice the Standard Quantum Limit at its operational frequency, an order of magnitude better than any other dark matter microwave cavity experiment to date. This result concludes the first phase of the HAYSTAC program utilizing a conventional copper cavity and a single JPA.
We report the first dark matter search results from XENON1T, a $sim$2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042$pm$12) kg fiducial mass and in the [5, 40] $mathrm{keV}_{mathrm{nr}}$ energy range of interest for WIMP dark matter searches, the electronic recoil background was $(1.93 pm 0.25) times 10^{-4}$ events/(kg $times$ day $times mathrm{keV}_{mathrm{ee}}$), the lowest ever achieved in a dark matter detector. A profile likelihood analysis shows that the data is consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c${}^2$, with a minimum of 7.7 $times 10^{-47}$ cm${}^2$ for 35-GeV/c${}^2$ WIMPs at 90% confidence level.