Do you want to publish a course? Click here

First results from a microwave cavity axion search at 24 micro-eV

64   0   0.0 ( 0 )
 Added by Benjamin Brubaker
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the first results from a new microwave cavity search for dark matter axions with masses above $20~mutext{eV}$. We exclude axion models with two-photon coupling $g_{agammagamma} gtrsim 2times10^{-14}~text{GeV}^{-1}$ over the range $23.55~mutext{eV} < m_a < 24.0~mutext{eV}$. These results represent two important achievements. First, we have reached cosmologically relevant sensitivity an order of magnitude higher in mass than any existing limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, we have demonstrated total noise approaching the standard quantum limit for the first time in an axion search.



rate research

Read More

The axion is a well-motivated cold dark matter (CDM) candidate first postulated to explain the absence of $CP$ violation in the strong interactions. CDM axions may be detected via their resonant conversion into photons in a haloscope detector: a tunable high-$Q$ microwave cavity maintained at cryogenic temperature, immersed a strong magnetic field, and coupled to a low-noise receiver. This dissertation reports on the design, commissioning, and first operation of the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a new detector designed to search for CDM axions with masses above $20$ $mumathrm{eV}$. I also describe the analysis procedure developed to derive limits on axion CDM from the first HAYSTAC data run, which excluded axion models with two-photon coupling $g_{agammagamma} gtrsim 2times10^{-14}$ $mathrm{GeV}^{-1}$, a factor of 2.3 above the benchmark KSVZ model, over the mass range $23.55 < m_a < 24.0$ $mumathrm{eV}$. This result represents two important achievements. First, it demonstrates cosmologically relevant sensitivity an order of magnitude higher in mass than any existing direct limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, HAYSTAC has demonstrated total noise approaching the standard quantum limit for the first time in a haloscope axion search.
This paper reports the first results of a direct dark matter search with the DEAP-3600 single-phase liquid argon (LAr) detector. The experiment was performed 2 km underground at SNOLAB (Sudbury, Canada) utilizing a large target mass, with the LAr target contained in a spherical acrylic vessel of 3600 kg capacity. The LAr is viewed by an array of PMTs, which would register scintillation light produced by rare nuclear recoil signals induced by dark matter particle scattering. An analysis of 4.44 live days (fiducial exposure of 9.87 tonne-days) of data taken with the nearly full detector during the initial filling phase demonstrates the detector performance and the best electronic recoil rejection using pulse-shape discrimination in argon, with leakage $<1.2times 10^{-7}$ (90% C.L.) between 16 and 33 keV$_{ee}$. No candidate signal events are observed, which results in the leading limit on WIMP-nucleon spin-independent cross section on argon, $<1.2times 10^{-44}$ cm$^2$ for a 100 GeV/c$^2$ WIMP mass (90% C.L.).
We describe a dark matter axion detector designed, constructed, and operated both as an innovation platform for new cavity and amplifier technologies and as a data pathfinder in the $5 - 25$ GHz range ($sim20-100: mu$eV). The platform is small but flexible to facilitate the development of new microwave cavity and amplifier concepts in an operational environment. The experiment has recently completed its first data production; it is the first microwave cavity axion search to deploy a Josephson parametric amplifier and a dilution refrigerator to achieve near-quantum limited performance.
We report the first dark matter search results from XENON1T, a $sim$2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042$pm$12) kg fiducial mass and in the [5, 40] $mathrm{keV}_{mathrm{nr}}$ energy range of interest for WIMP dark matter searches, the electronic recoil background was $(1.93 pm 0.25) times 10^{-4}$ events/(kg $times$ day $times mathrm{keV}_{mathrm{ee}}$), the lowest ever achieved in a dark matter detector. A profile likelihood analysis shows that the data is consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c${}^2$, with a minimum of 7.7 $times 10^{-47}$ cm${}^2$ for 35-GeV/c${}^2$ WIMPs at 90% confidence level.
Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا