No Arabic abstract
We describe in detail the analysis procedure used to derive the first limits from the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a microwave cavity search for cold dark matter (CDM) axions with masses above $20 mutext{eV}$. We have introduced several significant innovations to the axion search analysis pioneered by the Axion Dark Matter eXperiment (ADMX), including optimal filtering of the individual power spectra that constitute the axion search dataset and a consistent maximum likelihood procedure for combining and rebinning these spectra. These innovations enable us to obtain the axion-photon coupling $|g_gamma|$ excluded at any desired confidence level directly from the statistics of the combined data.
The axion is a well-motivated cold dark matter (CDM) candidate first postulated to explain the absence of $CP$ violation in the strong interactions. CDM axions may be detected via their resonant conversion into photons in a haloscope detector: a tunable high-$Q$ microwave cavity maintained at cryogenic temperature, immersed a strong magnetic field, and coupled to a low-noise receiver. This dissertation reports on the design, commissioning, and first operation of the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a new detector designed to search for CDM axions with masses above $20$ $mumathrm{eV}$. I also describe the analysis procedure developed to derive limits on axion CDM from the first HAYSTAC data run, which excluded axion models with two-photon coupling $g_{agammagamma} gtrsim 2times10^{-14}$ $mathrm{GeV}^{-1}$, a factor of 2.3 above the benchmark KSVZ model, over the mass range $23.55 < m_a < 24.0$ $mumathrm{eV}$. This result represents two important achievements. First, it demonstrates cosmologically relevant sensitivity an order of magnitude higher in mass than any existing direct limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, HAYSTAC has demonstrated total noise approaching the standard quantum limit for the first time in a haloscope axion search.
The microwave cavity experiment is the most sensitive way of looking for axions in the 0.1-10 GHz range, corresponding to masses of 0.5 - 40 $mu$eV. The particular challenge for frequencies greater than 5 GHz is designing a cavity with a large volume that contains a resonant mode that has a high form factor, a high quality factor, a wide dynamic range, and is free from intruder modes. For HAYSTAC, we have designed and constructed an optimized high frequency cavity with a tuning mechanism that preserves a high degree of rotational symmetry, critical to maximizing its figure of merit. This cavity covers an important frequency range according to recent theoretical estimates for the axion mass, 5.5 - 7.4 GHz, and the design appears extendable to higher frequencies as well. This paper will discuss key design and construction details of the cavity, present a summary of the design evolution, and alert practitioners of potentially unfruitful avenues for future work.
In experiments searching for axionic dark matter, the use of the standard threshold-based data analysis discards valuable information. We present a Bayesian analysis framework that builds on an existing processing protocol to extract more information from the data of coherent axion detectors such as operating haloscopes. The analysis avoids logical subtleties that accompany the standard analysis framework and enables greater experimental flexibility on future data runs. Performing this analysis on the existing data from the HAYSTAC experiment, we find improved constraints on the axion-photon coupling $g_gamma$ while also identifying the most promising regions of parameter space within the $23.15$--$24.0$ $mu$eV mass range. A comparison with the standard threshold analysis suggests a $36%$ improvement in scan rate from our analysis, demonstrating the utility of this framework for future axion haloscope analyses.
The Axion Resonant InterAction Detection Experiment (ARIADNE) is a collaborative effort to search for the QCD axion using techniques based on nuclear magnetic resonance. In the experiment, axions or axion-like particles would mediate short-range spin-dependent interactions between a laser-polarized 3He gas and a rotating (unpolarized) tungsten source mass, acting as a tiny, fictitious magnetic field. The experiment has the potential to probe deep within the theoretically interesting regime for the QCD axion in the mass range of 0.1-10 meV, independently of cosmological assumptions. The experiment relies on a stable rotary mechanism and superconducting magnetic shielding, required to screen the 3He sample from ordinary magnetic noise. Progress on testing the stability of the rotary mechanism is reported, and the design for the superconducting shielding is discussed.
We report here several technical improvements to the HAYSTAC (Haloscope at Yale Sensitive To Axion Cold dark matter) that have improved operational efficiency, sensitivity, and stability.