Do you want to publish a course? Click here

On the structure of zero-sum free set with minimum subset sums in abelian groups

76   0   0.0 ( 0 )
 Added by Jiangtao Peng
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Let $G$ be an additive abelian group and $Ssubset G$ a subset. Let $Sigma(S)$ denote the set of group elements which can be expressed as a sum of a nonempty subset of $S$. We say $S$ is zero-sum free if $0 otin Sigma(S)$. It was conjectured by R.B.~Eggleton and P.~Erd{o}s in 1972 and proved by W.~Gao et. al. in 2008 that $|Sigma(S)|geq 19$ provided that $S$ is a zero-sum free subset of an abelian group $G$ with $|S|=6$. In this paper, we determined the structure of zero-sum free set $S$ where $|S|=6$ and $|Sigma(S)|=19$.

rate research

Read More

The purpose of the article is to provide an unified way to formulate zero-sum invariants. Let $G$ be a finite additive abelian group. Let $B(G)$ denote the set consisting of all nonempty zero-sum sequences over G. For $Omega subset B(G$), let $d_{Omega}(G)$ be the smallest integer $t$ such that every sequence $S$ over $G$ of length $|S|geq t$ has a subsequence in $Omega$.We provide some first results and open problems on $d_{Omega}(G)$.
68 - Zhengjun Cao , Lihua Liu 2016
In 1990, Alon and Kleitman proposed an argument for the sum-free subset problem: every set of n nonzero elements of a finite Abelian group contains a sum-free subset A of size |A|>frac{2}{7}n. In this note, we show that the argument confused two different randomness. It applies only to the finite Abelian group G = (Z/pZ)^s where p is a prime. For the general case, the problem remains open.
A subset $D$ of an Abelian group is $decomposable$ if $emptyset e Dsubset D+D$. In the paper we give partial answer to an open problem asking whether every finite decomposable subset $D$ of an Abelian group contains a non-empty subset $Zsubset D$ with $sum Z=0$. For every $ninmathbb N$ we present a decomposable subset $D$ of cardinality $|D|=n$ in the cyclic group of order $2^n-1$ such that $sum D=0$, but $sum T e 0$ for any proper non-empty subset $Tsubset D$. On the other hand, we prove that every decomposable subset $Dsubsetmathbb R$ of cardinality $|D|le 7$ contains a non-empty subset $Zsubset D$ of cardinality $|Z|lefrac12|D|$ with $sum Z=0$. For every $ninmathbb N$ we present a subset $Dsubsetmathbb Z$ of cardinality $|D|=2n$ such that $sum Z=0$ for some subset $Zsubset D$ of cardinality $|Z|=n$ and $sum T e 0$ for any non-empty subset $Tsubset D$ of cardinality $|T|<n=frac12|D|$. Also we prove that every finite decomposable subset $D$ of an Abelian group contains two non-empty subsets $A,B$ such that $sum A+sum B=0$.
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
Let $vec{w} = (w_1,dots, w_n) in mathbb{R}^{n}$. We show that for any $n^{-2}leepsilonle 1$, if [#{vec{xi} in {0,1}^{n}: langle vec{xi}, vec{w} rangle = tau} ge 2^{-epsilon n}cdot 2^{n}] for some $tau in mathbb{R}$, then [#{langle vec{xi}, vec{w} rangle : vec{xi} in {0,1}^{n}} le 2^{O(sqrt{epsilon}n)}.] This exponentially improves the $epsilon$ dependence in a recent result of Nederlof, Pawlewicz, Swennenhuis, and Wk{e}grzycki and leads to a similar improvement in the parameterized (by the number of bins) runtime of bin packing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا