Do you want to publish a course? Click here

Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

58   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Powerful laser-plasma processes are explored to generate discharge currents of a few $100,$kA in coil targets, yielding magnetostatic fields (B-fields) in excess of $0.5,$kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is the laser irradiance $I_{mathrm{las}}lambda_{mathrm{las}}^2$. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at $60 ,mathrm{mu m}$ depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics.



rate research

Read More

The ELIMED (MEDical and multidisciplinary application at ELI Beamlines) beam line is being developed at INFN-LNS with the aim of transporting and selecting in energy proton and ion beams accelerated by laser-matter interaction at ELI Beamlines in Prague. It will be a section of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ions Acceleration) beam line, dedicated to applications, including the medical one, of laser-accelerated ion beams [1,2]. A Monte Carlo model has been developed to support the design of the beam line in terms of particle transport efficiency, to optimize the transport parameters at the irradiation point in air and, furthermore, to predict beam parameters in order to deliver dose distributions of clinical relevance. The application has been developed using the Geant4 [3] Monte Carlo toolkit and has been designed in a modular way in order to easily switch on/off geometrical components according to different experimental setups and users requirements, as reported in [4], describing the early-stage code and simulations. The application has been delivered to ELI Beamlines and will be available for future ELIMAIAs users as ready-to-use tool useful during experiment preparation and analysis. The final version of the developed application will be described in detail in this contribution, together with the final results, in terms of energy spectra and transmission efficiency along the in-vacuum beam line, obtained by performing end-to-end simulations.
Identifying the sources of the highest energy cosmic rays requires understanding how they are deflected by the stochastic, spatially intermittent intergalactic magnetic field. Here we report measurements of energetic charged-particle propagation through a laser-produced magnetized plasma with these properties. We characterize the diffusive transport of the particles experimentally. The results show that the transport is diffusive and that, for the regime of interest for the highest-energy cosmic rays, the diffusion coefficient is unaffected by the spatial intermittency of the magnetic field.
The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in ICF ignition sparks. This avoids the ignition quench caused by the hot spark mixing with the surrounding cold fuel, which is the crucial problem of the currently pursued ignition scheme. High-intensity lasers efficiently produce relativistic electron beams (REB). A part of the REB kinetic energy is deposited in the core, and then the heated region becomes the hot spark to trigger the ignition. However, only a small portion of the REB collides with the core because of its large divergence. Here we have demonstrated enhanced laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a kilo-tesla-level magnetic field that is applied to the transport region from the REB generation point to the core which results in guiding the REB along the magnetic field lines to the core. 7.7 $pm$ 1.3 % of the maximum coupling was achieved even with a relatively small radial area density core ($rho R$ $sim$ 0.1 g/cm$^2$). The guided REB transport was clearly visualized in a pre-compressed core by using Cu-$K_alpha$ imaging technique. A simplified model coupled with the comprehensive diagnostics yields 6.2% of the coupling that agrees fairly with the measured coupling. This model also reveals that an ignition-scale areal density core ($rho R$ $sim$ 0.4 g/cm$^2$) leads to much higher laser-to-core coupling ($>$ 15%), this is much higher than that achieved by the current scheme.
Laser produced high-energy-density plasmas may contain strong magnetic fields that affect the energy transport, which can be nonlocal. Models which describe the magnetized nonlocal transport are formally complicated and based on many approximations. This paper presents a more straightforward approach to the description of the electron transport in this regime, based on the extension of a reduced entropic model. The calculated magnetized heat fluxes are compared with the known asymptotic limits and applied for studying of a magnetized nonocal plasma thermalization.
Quasi-static magnetic-fields up to $800,$T are generated in the interaction of intense laser pulses ($500,$J, $1,$ns, $10^{17},$W/cm$^2$) with capacitor-coil targets of different materials. The reproducible magnetic-field peak and rise-time, consistent with the laser pulse duration, were accurately inferred from measurements with GHz-bandwidth inductor pickup coils (B-dot probes). Results from Faraday rotation of polarized optical laser light and deflectometry of energetic proton beams are consistent with the B-dot probe measurements at the early stages of the target charging, up to $tapprox 0.35,$ns, and then are disturbed by radiation and plasma effects. The field has a dipole-like distribution over a characteristic volume of $1,$mm$^3$, which is coherent with theoretical expectations. These results demonstrate a very efficient conversion of the laser energy into magnetic fields, thus establishing a robust laser-driven platform for reproducible, well characterized, generation of quasi-static magnetic fields at the kT-level, as well as for magnetization and accurate probing of high-energy-density samples driven by secondary powerful laser or particle beams.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا