Do you want to publish a course? Click here

Magnetized Fast Isochoric Laser Heating for Efficient Creation of Ultra-High-Energy-Density States

94   0   0.0 ( 0 )
 Added by Shinsuke Fujioka Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quest for the inertial confinement fusion (ICF) ignition is a grand challenge, as exemplified by extraordinary large laser facilities. Fast isochoric heating of a pre-compressed plasma core with a high-intensity short-pulse laser is an attractive and alternative approach to create ultra-high-energy-density states like those found in ICF ignition sparks. This avoids the ignition quench caused by the hot spark mixing with the surrounding cold fuel, which is the crucial problem of the currently pursued ignition scheme. High-intensity lasers efficiently produce relativistic electron beams (REB). A part of the REB kinetic energy is deposited in the core, and then the heated region becomes the hot spark to trigger the ignition. However, only a small portion of the REB collides with the core because of its large divergence. Here we have demonstrated enhanced laser-to-core energy coupling with the magnetized fast isochoric heating. The method employs a kilo-tesla-level magnetic field that is applied to the transport region from the REB generation point to the core which results in guiding the REB along the magnetic field lines to the core. 7.7 $pm$ 1.3 % of the maximum coupling was achieved even with a relatively small radial area density core ($rho R$ $sim$ 0.1 g/cm$^2$). The guided REB transport was clearly visualized in a pre-compressed core by using Cu-$K_alpha$ imaging technique. A simplified model coupled with the comprehensive diagnostics yields 6.2% of the coupling that agrees fairly with the measured coupling. This model also reveals that an ignition-scale areal density core ($rho R$ $sim$ 0.4 g/cm$^2$) leads to much higher laser-to-core coupling ($>$ 15%), this is much higher than that achieved by the current scheme.

rate research

Read More

Fast isochoric laser heating is a scheme to heat a matter with relativistic-intensity ($>$ 10$^{18}$ W/cm$^2$) laser pulse or X-ray free electron laser pulse. The fast isochoric laser heating has been studied for creating efficiently ultra-high-energy-density (UHED) state. We demonstrate an fast isochoric heating of an imploded dense plasma using a multi-picosecond kJ-class petawatt laser with an assistance of externally applied kilo-tesla magnetic fields for guiding fast electrons to the dense plasma.The UHED state with 2.2 Peta-Pascal is achieved experimentally with 4.6 kJ of total laser energy that is one order of magnitude lower than the energy used in the conventional implosion scheme. A two-dimensional particle-in-cell simulation reveals that diffusive heating from a laser-plasma interaction zone to the dense plasma plays an essential role to the efficient creation of the UHED state.
The radiation pressure of next generation ultra-high intensity ($>10^{23}$ W/cm$^{2}$) lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these laser pulses with matter. Here we show that these effects may lead to the production of an extremely dense ($sim10^{24}$ cm$^{-3}$) pair-plasma which absorbs the laser pulse consequently reducing the accelerated ion energy and energy conversion efficiency by up to 30-50% & 50-65%, respectively. Thus we identify the regimes of laser-matter interaction where either ions are efficiently accelerated or dense pair-plasmas are produced as a guide for future experiments.
Powerful laser-plasma processes are explored to generate discharge currents of a few $100,$kA in coil targets, yielding magnetostatic fields (B-fields) in excess of $0.5,$kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, describing qualitatively the evolution of the discharge current, the major control parameter is the laser irradiance $I_{mathrm{las}}lambda_{mathrm{las}}^2$. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and by proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at $60 ,mathrm{mu m}$ depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics.
62 - Y. Lu , P. Tzeferacos , E. Liang 2018
Three dimensional FLASH magneto-hydrodynamics(MHD) modeling is carried out to interpret the OMEGA laser experiments of strongly magnetized, highly collimated jets driven by a ring of 20 OMEGA beams. The predicted optical Thomson scattering spectra and proton images are in good agreement with a subset of the experimental data. Magnetic fields generated via the Biermann battery term are amplified at the boundary between the core and the surrounding of the jet. The simulation predicts multiple axially aligned magnetic flux ropes with alternating poloidal component. Future applications of the hollow ring configuration in laboratory astrophysics are discussed.
Magnetic reconnection in strongly magnetized (low-beta), weakly collisional plasmas is investigated using a novel fluid-kinetic model [Zocco & Schekochihin, Phys. Plasmas 18, 102309 (2011)] which retains non-isothermal electron kinetics. It is shown that electron heating via Landau damping (linear phase mixing) is the dominant dissipation mechanism. In time, electron heating occurs after the peak of the reconnection rate; in space, it is concentrated along the separatrices of the magnetic island. For sufficiently large systems, the peak reconnection rate is $cE_{max}approx 0.2v_AB_{y,0}$, where $v_A$ is the Alfven speed based on the reconnecting field $B_{y,0}$. The island saturation width is the same as in MHD models except for small systems, when it becomes comparable to the kinetic scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا