Do you want to publish a course? Click here

Rb-NMR study of the quasi-one dimensional competing spin-chain compound Rb2Cu2Mo3O12

113   0   0.0 ( 0 )
 Added by Takayuki Goto
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rb-NMR study has been performed on the quasi-one dimensional competing spin chain Rb2Cu2Mo3O12 with ferromagnetic and antiferromagnetic exchange interactions on nearest neighboring and next nearest neighboring spins, respectively. The system changes from a gapped ground state at zero field to the gapless state at H_C simeq 2 T, where the existence of magnetic order below 1 K was demonstrated by a broadening of NMR spectrum, associated with a critical divergence of 1/T_1. In higher temperature region, 1/T_1 showed a power-law type temperature dependence, from which the field dependence of Luttinger parameter K was obtained and compared with theoretical calculations based on the spin nematic Tomonaga Luttinger Liquid (TLL) state.



rate research

Read More

189 - A Yagi , K Matsui , T Goto 2017
S = 1/2 competing spin chain compound Cs2Cu2Mo3O12 has two dominant exchange interactions of the nearest neighbouring ferromagnetic J1= 93 K and the second nearest neighbouring antiferromagnetic J2= +33 K, and is expected to show the nematic Tomonaga-Luttinger liquid (TLL) state under high magnetic field region. The recent theoretical study by Sato et al. has shown that in the nematic TLL state, the spin fluctuations are expected to be highly anisotropic, that is, its transverse component is suppressed. Our previous NMR study on the present system showed that the dominant contribution to nuclear spin relaxation comes from the longitudinal component. In order to conclude that the transverse component of spin fluctuations is suppressed, the knowledge of hyperfine coupling is indispensable. This article is solely devoted to investigate the hyperfine coupling of 133Cs-NMR site to prove that the anisotropic part of hyperfine coupling, which connects the nuclear spin relaxation with the transverse spin fluctuations is considerably large to be A_an=+770 Oe/mu_B.
Resistivity, optical, and angle-resolved photoemission experiments reveal unusual one-dimensional electronic properties of highly anisotropic SrNbO$_{3.41}$. Along the conducting chain direction we find an extremely small energy gap of only a few meV at the Fermi level. A discussion in terms of typical 1D instabilities (Peierls, Mott-Hubbard) shows that neither seems to provide a satisfactory explanation for the unique properties of SrNbO$_{3.41}$.
92 - Tarun Grover , T. Senthil 2007
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.
We study an incommensurate long-range order induced by an external magnetic field in a quasi-one-dimensional bond-alternating spin system, F5PNN, focusing on the role of the frustrating interaction which can be enhanced by a high-pressure effect. On the basis of the density matrix renormalization group analysis of a microscopic model for F5PNN, we present several H-T phase diagrams for typical parameters of the frustrating next-nearest-neighbour coupling and the interchain interaction, and then discuss how the field-induced incommensurate order develops by the frustration effect in such phase diagrams. A magnetization plateau at half the saturation moment is also mentioned.
Magnetic properties in the quasi-one-dimensional organic salt (TMTTF)2SbF6 are investigated by 13C NMR under pressures. Antiferromagnetic phase transition at ambient pressure (AFI) is confirmed. Charge-ordering is suppressed by pressure and is not observed under 8 kbar. For 5 < P < 20 kbar, a sharp spectrum and the rapid decrease of the spin-lattice relaxation rate 1/T1 were observed below about 4 K, attributed to a spin-gap transition. Above 20 kbar, extremely broadened spectrum and critical increase of 1/T1 were observed. This indicates that the system enters into another antiferromagnetic phase (AFII) under pressure. The slope of the antiferromagnetic phase transition temperature T_AFII, dT_AFII/dP, is positive, while T_AFI decreases with pressure. The magnetic moment is weakly incommensurate with the lattice at 30 kbar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا