Do you want to publish a course? Click here

Possibility of field-induced incommensurate order in quasi-one-dimensional frustrated spin system

65   0   0.0 ( 0 )
 Added by Nobuya Maeshima
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study an incommensurate long-range order induced by an external magnetic field in a quasi-one-dimensional bond-alternating spin system, F5PNN, focusing on the role of the frustrating interaction which can be enhanced by a high-pressure effect. On the basis of the density matrix renormalization group analysis of a microscopic model for F5PNN, we present several H-T phase diagrams for typical parameters of the frustrating next-nearest-neighbour coupling and the interchain interaction, and then discuss how the field-induced incommensurate order develops by the frustration effect in such phase diagrams. A magnetization plateau at half the saturation moment is also mentioned.



rate research

Read More

We predict that an external field can induce a spin order in highly frustrated classical Heisenberg magnets. We find analytically stabilization of collinear states by thermal fluctuations at a one-third of the saturation field for kagome and garnet lattices and at a half of the saturation field for pyrochlore and frustrated square lattices. This effect is studied numerically for the frustrated square-lattice antiferromagnet by Monte Carlo simulations for classical spins and by exact diagonalization for $S=1/2$. The field induced collinear states have a spin gap and produce magnetization plateaus.
92 - Tarun Grover , T. Senthil 2007
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.
Rb-NMR study has been performed on the quasi-one dimensional competing spin chain Rb2Cu2Mo3O12 with ferromagnetic and antiferromagnetic exchange interactions on nearest neighboring and next nearest neighboring spins, respectively. The system changes from a gapped ground state at zero field to the gapless state at H_C simeq 2 T, where the existence of magnetic order below 1 K was demonstrated by a broadening of NMR spectrum, associated with a critical divergence of 1/T_1. In higher temperature region, 1/T_1 showed a power-law type temperature dependence, from which the field dependence of Luttinger parameter K was obtained and compared with theoretical calculations based on the spin nematic Tomonaga Luttinger Liquid (TLL) state.
The dynamical properties of free and bound domain-wall excitations in Ising-chain materials have recently become the focus of intense research interest. New materials and spectrometers have made it possible to control the environment of coupled Ising chains by both effective internal and applied external fields, which can be both longitudinal and transverse, and thus to demonstrate how the resulting magnetic phase transitions and the nature of the associated excited states obey fundamental symmetry properties. In RbCoCl$_3$, the weakly coupled Ising chains form a triangular lattice whose frustrated geometry and magnetic ordering transitions at low temperature open new possibilities for the Ising-chain environment. We have investigated the structure and magnetism in RbCoCl$_3$ by high-resolution x-ray diffraction and neutron scattering measurements on powder and single crystal samples between 1.5 K and 300 K. Upon cooling, the Co$^{2+}$ spins develop one-dimensional antiferromagnetic correlations along the chain axis ($c$-axis) below 90 K. Below the first Neel temperature, $T_{N1}$ = 28 K, a partial 3D magnetic order sets in, with propagation vector ${vec k}_1$ = (1/3,1/3,1), the moments aligned along the $c$-axis and every third chain uncorrelated from its neighbours. Only below a second magnetic phase transition at $T_{N2}$ = 13 K does the system achieve a fully ordered state, with two additional propagation vectors: ${vec k}_2$ = (0,0,1) establishes a honeycomb $c$-axis order, in which 1/3 of the chains are subject to a strong effective mean field due to their neighbours whereas 2/3 experience no net field, while ${vec k}_3$ = (1/2,0,1) governs a small, staggered in-plane ordered moment. We conclude that RbCoCl$_3$ is an excellent material to study the physics of Ising chains in a wide variety of temperature-controlled environments.
Using inelastic neutron scattering, we have observed a quasi-one-dimensional dispersive magnetic excitation in the frustrated triangular-lattice spin-2 chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is characterized by a large zone-center spin gap of ~27 meV, which we attribute to the large single-ion anisotropy, and disperses along the chain direction with a bandwidth of ~3.5 meV. In the directions orthogonal to the chains, no measurable dispersion was found. With increasing temperature, the magnon dispersion shifts towards lower energies, yet persists up to at least 150 K, indicating that the ferromagnetic intrachain correlations survive up to 6 times higher temperatures than the long-range interchain antiferromagnetic order. The magnon dispersion can be well described within the predictions of linear spin-wave theory for a system of weakly coupled ferromagnetic chains with large single-ion anisotropy, enabling the direct quantitative determination of the magnetic exchange and anisotropy parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا