Do you want to publish a course? Click here

On the Nova Rate in M87

114   0   0.0 ( 0 )
 Added by Allen Shafter
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, Shara and collaborators searched for novae in M87 in a series of images originally acquired in HST program #10543 (PI: Baltz), finding a surprisingly high nova rate of $363_{-45}^{+33}$ per year. In an attempt to reconcile this rate with previous ground-based estimates, we have undertaken an independent analysis of the HST data. Our results are in broad agreement with those of Shara et al., although we argue that the global nova rate in M87 remains uncertain, both due to the difficulty in identifying bona fide novae from incomplete lightcurves, and in extrapolating observations near the center of M87 to the entire galaxy. We conclude that nova rates as low as ~200 per year remain plausible.



rate research

Read More

A multi-epoch H$alpha$ survey of the early-type spiral galaxy M94 (NGC 4736) has been completed as part of a program to establish the galaxys nova rate. A total of four nova candidates were discovered in seven epochs of observation during the period from 2005 to 2007. After making corrections for temporal coverage and spatial completeness, a global nova rate of 5.0$^{+1.8}_{-1.4}$ yr$^{-1}$ was determined. This rate corresponds to a specific-luminosity nova rate of 1.4 $pm$ 0.5 novae per year per 10$^{10} L_{odot,K}$ when the $K$ luminosity is determined from the $B-K$ color, or 1.5 $pm$ 0.4 novae per year per 10$^{10} L_{odot,K}$ when the $K$ luminosity is derived from the Two Micron All Sky Survey. These values are slightly lower than that of other galaxies with measured nova rates, which typically lie in the range of $2-3$ novae per year per 10$^{10} L_{odot}$ in the $K$ band.
81 - A. W. Shafter 2016
Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching $mleq2$ to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae and by employing a Monte Carlo analysis to better estimate the uncertainty in the derived nova rates. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations and in the absolute magnitude distribution. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates of $sim$50 to in excess of 100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of $sim$35 to $sim$75 per year. An average of the most plausible models yields a rate of $50_{-23}^{+31}$ yr$^{-1}$, which is arguably the best estimate currently available for the nova rate in the Galaxy. Virtually all models produce rates that represent significant increases over recent estimates, and bring the Galactic nova rate into better agreement with that expected based on comparison with the latest results from extragalactic surveys.
The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae and nine fainter, likely very slow and/or symbiotic novae. In this first in a series of papers we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest classical novae we derive a nova rate for M87: $363_{-45}^{+33}$ novae/yr. We also derive the luminosity-specific classical nova rate for this galaxy, which is $7.88_{-2.6}^{+2.3} /yr/ 10^{10}L_odot,_{K}$. Both rates are 3-4 times higher higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. We suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies.
We compute theoretical nova rates as well as type Ia SN rates in galaxies of different morphological type (Milky Way, ellipticals and irregulars) by means of detailed chemical evolution models, and compare them with the most recent observations. The main difference among the different galaxies is the assumed history of star formation. In particular, we predict that the nova rates in giant ellipticals such as M87 are 100-300 nova/yr, about a factor of ten larger than in our Galaxy (25 nova/yr), in agreement with very recent estimates from HST data. The best agreement with the observed rates is obtained if the recurrence time of novae in ellipticals is assumed to be longer than in the Milky Way. This result indicates that the star formation rate in ellipticals, and in particular in M87, must have been very efficient at early cosmic epochs. We predict a nova rate for the LMC of 1.7 nova/yr, again in agreement with observations. We compute also the K- and B-band luminosities for ellipticals of different luminous mass and conclude that there is not a clear trend for the luminosity specific nova rate with luminosity among these galaxies. However, firm conclusions about ellipticals cannot be drawn because of possible observational biases in observing these objects. The comparison between the specific nova rates in the Milky Way and the LMC indicates a trend of increasing nova rate passing from the Galaxy towards late-type spirals and Magellanic irregulars.
104 - Lev Titarchuk (ASC , FIAN , Russia 2019
We present the discovery of correlations between the X-ray spectral (photon) index and mass accretion rate observed in active galactic nuclei (AGNs) 3C~454.3 and M87. We analyzed spectral transition episodes observed in these AGNs using Chandra, Swift, Suzaku, BeppoSAX, ASCA and RXTE data. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index (Gamma) and normalization of the seed component which is proportional to a disk mass accretion rate Mdot. We developed an analytical model that shows that Gamma of the BH emergent spectrum undergoes an evolution from lower to higher values depending on Mdot. To estimate a BH mass in 3C~454.3 we consider extra-galactic SMBHs NGC~4051 and NGC~7469 as well as Galactic BHs Cygnus X--1 and GRO~J1550--564 as reference sources for which distances, inclination angles are known and the BH masses are already evaluated. For M87 on the other hand, we provide the BH mass scaling using extra-galactic sources (IMBHs: ESO 243-49 HLX 1 and M 101 ULX--1) and Galactic sources (stellar mass BHs: XTE J1550-564, 4U 1630-472, GRS 1915+105 and H 1743-322) as reference sources. Application of the scaling technique for the photon index-Mdot correlation provides estimates of the BH masses in 3C 454.3 and M87 to be about 3.4x10^9 and 5.6 x10^7 solar masses, respectively. We also compared our scaling BH mass estimates with a recent BH mass estimate of M_{87}=6.5x 10^9 M_{odot} made using the {Event Horizon Telescope} which gives an image at 1.3 mm and is based on the angular size of the `BH event horizon. Our BH mass estimate in M87 is at least two orders of magnitude lower than that made by the EHT team.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا