No Arabic abstract
A multi-epoch H$alpha$ survey of the early-type spiral galaxy M94 (NGC 4736) has been completed as part of a program to establish the galaxys nova rate. A total of four nova candidates were discovered in seven epochs of observation during the period from 2005 to 2007. After making corrections for temporal coverage and spatial completeness, a global nova rate of 5.0$^{+1.8}_{-1.4}$ yr$^{-1}$ was determined. This rate corresponds to a specific-luminosity nova rate of 1.4 $pm$ 0.5 novae per year per 10$^{10} L_{odot,K}$ when the $K$ luminosity is determined from the $B-K$ color, or 1.5 $pm$ 0.4 novae per year per 10$^{10} L_{odot,K}$ when the $K$ luminosity is derived from the Two Micron All Sky Survey. These values are slightly lower than that of other galaxies with measured nova rates, which typically lie in the range of $2-3$ novae per year per 10$^{10} L_{odot}$ in the $K$ band.
M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (FUV-band), Hubble Space Telescope (NUV-band), Kitt Peak 0.9-m telescope (H-alpha, R, and I bands), and Palomar 5-m telescope (B-band), along with spectra from the International Ultraviolet Explorer and Lick 1-m telescopes. The wide-field UIT image shows FUV emission from (a) an elongated nucleus, (b) a diffuse inner disk, where H-alpha is observed in absorption, (c) a bright inner ring of H II regions at the perimeter of the inner disk (R = 48 arcsec. = 1.1 kpc), and (d) two 500-pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R= 130 arcsec. = 2.9 kpc). The HST/FOC image resolves the NUV emission from the nuclear region into a bright core and a faint 20 arcsec. long ``mini-bar at a position angle of 30 deg. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates an approximately 10^7 or 10^8 yr-old stellar population from low-level starbirth activity blended with some LINER activity. Analysis of the H-alpha, FUV, NUV, B, R, and I-band emission along with other observed tracers of stars and gas in M94 indicates that most of the star formation is being orchestrated via ring-bar dynamics involving the nuclear mini-bar, inner ring, oval disk, and outer ring. The inner starburst ring and bi-symmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated galaxies that have been observed at high redshift. The gravitationally-lensed ``Pretzel Galaxy (0024+1654) at a redshift of approximately 1.5 provides an important precedent in this regard.
Recently, Shara and collaborators searched for novae in M87 in a series of images originally acquired in HST program #10543 (PI: Baltz), finding a surprisingly high nova rate of $363_{-45}^{+33}$ per year. In an attempt to reconcile this rate with previous ground-based estimates, we have undertaken an independent analysis of the HST data. Our results are in broad agreement with those of Shara et al., although we argue that the global nova rate in M87 remains uncertain, both due to the difficulty in identifying bona fide novae from incomplete lightcurves, and in extrapolating observations near the center of M87 to the entire galaxy. We conclude that nova rates as low as ~200 per year remain plausible.
We present new spectral and photometric data of confirmed LBV star from the NGC4736 galaxy. The star NGC4736_1 (Mbol = -11.5 mag) showed noticeable spectral variability from 2015 to 2018, which was accompanied by a significant change in the brightness. We also have estimated possible initial mass of the object NGC4736_1 as ~130 Msun.
We have found three new LBV candidates in the star-forming galaxy NGC 4736. They show typical well-known LBV spectra, broad and strong hydrogen lines, He I lines, many Fe II lines, and forbidden [Fe II] and [Fe III]. Using archival Hubble Space Telescope and ground-based telescope data, we have estimated the bolometric magnitudes of these objects from -8.4 to -11.5, temperatures, and reddening. Source NGC 4736_1 (Mv = -10.2 +/- 0.1 mag) demonstrated variability between 2005 and 2018 as Delta V = 1.1 mag and Delta B = 0.82 mag, the object belongs to LBV stars. NGC 4736_2 (Mv < -8.6 mag) shows P Cyg profiles and its spectrum has changed from 2015 to 2018. The brightness variability of NGC 4736_2 is Delta V = 0.5 mag and Delta B = 0.4 mag. In NGC 4736_3 (Mv = -8.2 +/- 0.2 mag), we found strong nebular lines, broad wings of hydrogen; the brightness variation is only 0.2 mag. Therefore, the last two objects may reside to LBV candidates.
Stellar archeology of nearby LINER galaxies may reveal if there is a stellar young population that may be responsible for the LINER phenomenon. We show results for the classical LINER galaxies NGC 4579 and NGC 4736 and find no evidence of such populations.