Do you want to publish a course? Click here

Observation of new magnetic ground state in frustrated quantum antiferromagnet spin liquid system Cs2CuCl4

241   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cs2CuCl4 is known to possess a quantum spin liquid phase with antiferromagnetic interaction below 2.8 K. We report the observation of a new metastable magnetic phase of the triangular frustrated quantum spin system Cs2CuCl4 induced by the application of hydrostatic pressure. We measured the magnetic properties of Cs2CuCl4 following the application and release of pressure after 3 days. We observed a previously unknown ordered magnetic phase with a transition temperature of 9 K. Furthermore, the recovered sample with new magnetic ground state possesses an equivalent crystal structure to the uncompressed one with antiferromagnetic quantum spin liquid phase.



rate research

Read More

We report muSR experiments on Mg{x}Cu{4-x}(OH)6Cl2 with x sim 1, a new material isostructural to Herbertsmithite exhibiting regular kagome planes of spin 1/2 (Cu^{2+}), and therefore a candidate for a spin liquid ground state. We evidence the absence of any magnetic ordering down to 20 mK (sim J/10^4). We investigate in detail the spin dynamics on well characterized samples in zero and applied longitudinal fields and propose a low T defect based interpretation to explain the unconventional dynamics observed in the quantum spin liquid phase.
217 - Y. Tokiwa , T. Radu , R. Coldea 2006
We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields.
The geometrically frustrated double perovskite Ba2YRuO6 has magnetic 4d3 Ru5+ ions decorating an undistorted face-centered cubic (FCC) lattice. This material has been previously reported to exhibit commensurate long-range antiferromagnetic order below T_N = 36K, a factor f = 15 times lower than its Curie-Weiss temperature Theta_CW = -522 K, and purported short-range order to T* = 47K. We report new time-of-flight neutron spectroscopy of Ba2YRuO6 which shows the development of a 5 meV spin gap in the vicinity of the [100] magnetic ordering wavevector below T_N = 36K, with the transition to long-range order occurring at T* = 47K. We also report spin waves extending to 14 meV, a surprisingly small bandwidth in light of the large Theta_CW. We compare the spin gap and bandwidth to relevant neutron studies of the isostructural 4d1 material Ba2YMoO6,and discuss the results in the framework of relatively strong spin-orbit coupling expected in 4d magnetic systems.
Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs2CuCl4 were performed for the longitudinal modes c11 and c33 in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at TN. Isothermal measurements at T < TN of the sound attenuation reveal two closely-spaced features of different character on approaching the materials quantum-critical point (QCP) around Bs = 8.5 T for B // a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature TN(B). The second anomaly which is rounded and which becomes reduced in size upon cooling is assigned to the materials spin-liquid properties preceding the long-range antiferromagnetic ordering. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/kB = 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.
CuAl2O4 is a normal spinel oxide having quantum spin, S=1/2 for Cu2+. It is a rather unique feature that the Cu2+ ions of CuAl2O4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl2O4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependence of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards higher temperature with magnetic fields. On the other hand, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl2O4. Interestingly, there is no sign of structural distortion either although Cu2+ is a Jahn-Teller active ion. Thus, we claim that an orbital liquid state is the most likely ground state in CuAl2O4. Of further interest, it also exhibits a large frustration parameter, f = Theta_CW/Tm ~67, one of the largest values reported for spinel oxides. Our observations suggest that CuAl2O4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا