Do you want to publish a course? Click here

Magneto-acoustic study near the quantum critical point of the frustrated quantum antiferromagnet Cs2CuCl4

70   0   0.0 ( 0 )
 Added by Pham Thanh Cong
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magneto-acoustic investigations of the frustrated triangular-lattice antiferromagnet Cs2CuCl4 were performed for the longitudinal modes c11 and c33 in magnetic fields along the a-axis. The temperature dependence of the sound velocity at zero field shows a mild softening at low temperature and displays a small kink-like anomaly at TN. Isothermal measurements at T < TN of the sound attenuation reveal two closely-spaced features of different character on approaching the materials quantum-critical point (QCP) around Bs = 8.5 T for B // a. The peak at slightly lower fields remains sharp down to the lowest temperature and can be attributed to the ordering temperature TN(B). The second anomaly which is rounded and which becomes reduced in size upon cooling is assigned to the materials spin-liquid properties preceding the long-range antiferromagnetic ordering. These two features merge upon cooling suggesting a coincidence at the QCP. The elastic constant at lowest temperatures of our experiment at 32 mK can be well described by a Landau free energy model with a very small magnetoelastic coupling constant G/kB = 2.8 K. The applicability of this classical model indicates the existence of a small gap in the magnetic excitation spectrum which drives the system away from quantum criticality.



rate research

Read More

217 - Y. Tokiwa , T. Radu , R. Coldea 2006
We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields.
We consider the finite-temperature phase diagram of the $S = 1/2$ frustrated Heisenberg bilayer. Although this two-dimensional system may show magnetic order only at zero temperature, we demonstrate the presence of a line of finite-temperature critical points related to the line of first-order transitions between the dimer-singlet and -triplet regimes. We show by high-precision quantum Monte Carlo simulations, which are sign-free in the fully frustrated limit, that this critical point is in the Ising universality class. At zero temperature, the continuous transition between the ordered bilayer and the dimer-singlet state terminates on the first-order line, giving a quantum critical end point, and we use tensor-network calculations to follow the first-order discontinuities in its vicinity.
Cs2CuCl4 is known to possess a quantum spin liquid phase with antiferromagnetic interaction below 2.8 K. We report the observation of a new metastable magnetic phase of the triangular frustrated quantum spin system Cs2CuCl4 induced by the application of hydrostatic pressure. We measured the magnetic properties of Cs2CuCl4 following the application and release of pressure after 3 days. We observed a previously unknown ordered magnetic phase with a transition temperature of 9 K. Furthermore, the recovered sample with new magnetic ground state possesses an equivalent crystal structure to the uncompressed one with antiferromagnetic quantum spin liquid phase.
Spontaneous symmetry-breaking quantum phase transitions play an essential role in condensed matter physics. The collective excitations in the broken-symmetry phase near the quantum critical point can be characterized by fluctuations of phase and amplitude of the order parameter. The phase oscillations correspond to the massless Nambu$-$Goldstone modes whereas the massive amplitude mode, analogous to the Higgs boson in particle physics, is prone to decay into a pair of low-energy Nambu$-$Goldstone modes in low dimensions. Especially, observation of a Higgs amplitude mode in two dimensions is an outstanding experimental challenge. Here, using the inelastic neutron scattering and applying the bond-operator theory, we directly and unambiguously identify the Higgs amplitude mode in a two-dimensional S=1/2 quantum antiferromagnet C$_9$H$_{18}$N$_2$CuBr$_4$ near a quantum critical point in two dimensions. Owing to an anisotropic energy gap, it kinematically prevents such decay and the Higgs amplitude mode acquires an infinite lifetime.
We report a new peculiar effect of the interaction between a sublattice of frustrated quantum spin-1/2 chains and a sublattice of pseudospin-1/2 centers (quantum electric dipoles) uniquely co-existing in the complex oxide Li2ZrCuO4. 7Li nuclear magnetic-, Cu2+ electron spin resonance and a complex dielectric constant data reveal that the sublattice of Li+-derived electric dipoles orders glass like at Tg ~ 70 K yielding a spin site nonequivalency in the CuO2 chains. We suggest that such a remarkable interplay between electrical and spin degrees of freedom might strongly influence the properties of the spiral spin state in Li2ZrCuO4 that is close to a quantum ferromagnetic critical point. In particular that strong quantum fluctuations and/or the glassy behavior of electric dipoles might renormalize the exchange integrals affecting this way the pitch angle of the spiral as well as be responsible for the missing multiferroicity present in other helicoidal magnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا