No Arabic abstract
The geometrically frustrated double perovskite Ba2YRuO6 has magnetic 4d3 Ru5+ ions decorating an undistorted face-centered cubic (FCC) lattice. This material has been previously reported to exhibit commensurate long-range antiferromagnetic order below T_N = 36K, a factor f = 15 times lower than its Curie-Weiss temperature Theta_CW = -522 K, and purported short-range order to T* = 47K. We report new time-of-flight neutron spectroscopy of Ba2YRuO6 which shows the development of a 5 meV spin gap in the vicinity of the [100] magnetic ordering wavevector below T_N = 36K, with the transition to long-range order occurring at T* = 47K. We also report spin waves extending to 14 meV, a surprisingly small bandwidth in light of the large Theta_CW. We compare the spin gap and bandwidth to relevant neutron studies of the isostructural 4d1 material Ba2YMoO6,and discuss the results in the framework of relatively strong spin-orbit coupling expected in 4d magnetic systems.
We report muSR experiments on Mg{x}Cu{4-x}(OH)6Cl2 with x sim 1, a new material isostructural to Herbertsmithite exhibiting regular kagome planes of spin 1/2 (Cu^{2+}), and therefore a candidate for a spin liquid ground state. We evidence the absence of any magnetic ordering down to 20 mK (sim J/10^4). We investigate in detail the spin dynamics on well characterized samples in zero and applied longitudinal fields and propose a low T defect based interpretation to explain the unconventional dynamics observed in the quantum spin liquid phase.
The frustrated pyrochlore antiferromagnet Gd$_{2}$Ti$_{2}$O$_{7}$ has an unusual partially-ordered magnetic structure at the lowest measurable temperatures. This structure is currently believed to involve four magnetic propagation vectors $mathbf{k}in langle frac{1}{2} frac{1}{2} frac{1}{2} rangle^*$ in a cubic 4-$mathbf{k}$ structure, based on analysis of magnetic diffuse-scattering data [J. Phys.: Condens. Matter 16, L321 (2004)]. Here, we present three pieces of evidence against the 4-$mathbf{k}$ structure. First, we report single-crystal neutron-diffraction measurements as a function of applied magnetic field, which are consistent with the selective field-induced population of non-cubic magnetic domains. Second, we present evidence from high-resolution powder neutron-diffraction measurements that rhombohedral strains exist within magnetic domains, which may be generated by magneto-elastic coupling only for the alternative 1-$mathbf{k}$ structure. Finally, we show that the argument previously used to rule out the 1-$mathbf{k}$ structure is flawed, and demonstrate that magnetic diffuse-scattering data can actually be fitted quantitatively by a 1-$mathbf{k}$ structure in which spin fluctuations on ordered and disordered magnetic sites are strongly coupled. Our results provide an experimental foundation on which to base theoretical descriptions of partially-ordered states.
Partially-ordered magnets are distinct from both spin liquids and conventional ordered magnets because order and disorder coexist in the same magnetic phase. Here, we determine the nature of partial order in the canonical frustrated pyrochlore antiferromagnet Gd$_2$Ti$_{2}$O$_{7}$. Using single-crystal neutron-diffraction measurements in applied magnetic field, magnetic symmetry analysis, inelastic neutron-scattering measurements, and spin-wave modeling, we show that its low-temperature magnetic structure involves two propagation vectors (2-$mathbf{k}$ structure) with suppressed ordered magnetic moments and enhanced spin-wave fluctuations. Our experimental results support theoretical predictions of thermal fluctuation-driven order in Gd$_{2}$Ti$_{2}$O$_{7}$.
Cs2CuCl4 is known to possess a quantum spin liquid phase with antiferromagnetic interaction below 2.8 K. We report the observation of a new metastable magnetic phase of the triangular frustrated quantum spin system Cs2CuCl4 induced by the application of hydrostatic pressure. We measured the magnetic properties of Cs2CuCl4 following the application and release of pressure after 3 days. We observed a previously unknown ordered magnetic phase with a transition temperature of 9 K. Furthermore, the recovered sample with new magnetic ground state possesses an equivalent crystal structure to the uncompressed one with antiferromagnetic quantum spin liquid phase.
Spin wave dispersion in the frustrated fcc type-III antiferromagnet MnS$_2$ has been determined by inelastic neutron scattering using a triple-axis spectrometer. Existence of multiple spin wave branches, with significant separation between high-energy and low-energy modes highlighting the intrinsic magnetic frustration effect on the fcc lattice, is explained in terms of a spin wave analysis carried out for the antiferromagnetic Heisenberg model for this $S=5/2$ system with nearest and next-nearest-neighbor exchange interactions. Comparison of the calculated dispersion with spin wave measurement also reveals small suppression of magnetic frustration resulting from reduced exchange interaction between frustrated spins, possibly arising from anisotropic deformation of the cubic structure.