Do you want to publish a course? Click here

Long spin relaxation times in a transition metal atom in direct contact to a metal substrate

100   0   0.0 ( 0 )
 Added by Jens Wiebe
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Long spin relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables directly addressing the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have an astonishingly long spin relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes in order to process the spin-information.



rate research

Read More

Being atomically thin and amenable to external controls, two-dimensional (2D) materials offer a new paradigm for the realization of patterned qubit fabrication and operation at room temperature for quantum information sciences applications. Here we show that the antisite defect in 2D transition metal dichalcogenides (TMDs) can provide a controllable solid-state spin qubit system. Using high-throughput atomistic simulations, we identify several neutral antisite defects in TMDs that lie deep in the bulk band gap and host a paramagnetic triplet ground state. Our in-depth analysis reveals the presence of optical transitions and triplet-singlet intersystem crossing processes for fingerprinting these defect qubits. As an illustrative example, we discuss the initialization and readout principles of an antisite qubit in WS2, which is expected to be stable against interlayer interactions in a multilayer structure for qubit isolation and protection in future qubit-based devices. Our study opens a new pathway for creating scalable, room-temperature spin qubits in 2D TMDs.
We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density and temperature. The spin relaxation time $tau_s$ scales inversely with the mobility $mu$ of BLG samples both at room temperature and at low temperature. This indicates the importance of Dyakonov - Perel spin scattering in BLG. Spin relaxation times of up to 2 ns are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of Dyakonov-Perel spin scattering in BLG. In comparison to SLG, significant changes in the density dependence of $tau_s$ are observed as a function of temperature.
Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. Taking advantage of these strengths, we report on NV-based local sensing of the electrically driven insulator-to-metal transition (IMT) in a proximal Mott insulator. We studied the resistive switching properties of both pristine and ion-irradiated VO2 thin film devices by performing optically detected NV electron spin resonance measurements. These measurements probe the local temperature and magnetic field in electrically biased VO2 devices, which are in agreement with the global transport measurement results. In pristine devices, the electrically-driven IMT proceeds through Joule heating up to the transition temperature while in ion-irradiated devices, the transition occurs non-thermally, well below the transition temperature. Our results provide the first direct evidence for non-thermal electrically induced IMT in a Mott insulator, highlighting the significant opportunities offered by NV quantum sensors in exploring nanoscale thermal and electrical behaviors in Mott materials.
Here we show, with simultaneous transport and photoemission measurements, that the graphene terminated SiC(0001) surface undergoes a metal-insulator transition (MIT) upon dosingwith small amounts of atomic hydrogen. We find the room temperature resistance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi Liquid behaviour and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state.
We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenides monolayers. We show that momentum and spin relaxation times due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature $T_K$ on the doping is not strongly affected by the spin-orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and poor mans scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to $T_K$ which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا