Do you want to publish a course? Click here

Quantum Sensing of Insulator-to-Metal Transitions in a Mott Insulator

385   0   0.0 ( 0 )
 Added by Chunhui Du
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. Taking advantage of these strengths, we report on NV-based local sensing of the electrically driven insulator-to-metal transition (IMT) in a proximal Mott insulator. We studied the resistive switching properties of both pristine and ion-irradiated VO2 thin film devices by performing optically detected NV electron spin resonance measurements. These measurements probe the local temperature and magnetic field in electrically biased VO2 devices, which are in agreement with the global transport measurement results. In pristine devices, the electrically-driven IMT proceeds through Joule heating up to the transition temperature while in ion-irradiated devices, the transition occurs non-thermally, well below the transition temperature. Our results provide the first direct evidence for non-thermal electrically induced IMT in a Mott insulator, highlighting the significant opportunities offered by NV quantum sensors in exploring nanoscale thermal and electrical behaviors in Mott materials.



rate research

Read More

Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have been widely applied to emerging quantum sensing, imaging, and network efforts, showing unprecedented field sensitivity and nanoscale spatial resolution. Many of these advantages derive from their excellent quantum-coherence, controllable entanglement, and high fidelity of operations, enabling opportunities to outperform the classical counterpart. Exploiting this cutting-edge quantum metrology, we report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization. The measured field dependence of NV relaxation rates is well correlated to the variation of magnon density and band structure of the magnetic samples, which are challenging to access by the conventional magnetometry methods. Our results highlight the significant opportunities offered by NV centers in diagnosing the noise environment of functional magnetic elements, providing valuable information to design next-generation, high-density, and scalable spintronic devices.
132 - D. Babich , J. Tranchant , C. Adda 2021
Since the beginnings of the electronic age, a quest for ever faster and smaller switches has been initiated, since this element is ubiquitous and foundational in any electronic circuit to regulate the flow of current. Mott insulators are promising candidates to meet this need as they undergo extremely fast resistive switching under electric field. However the mechanism of this transition is still under debate. Our spatially-resolved {mu}-XRD imaging experiments carried out on the prototypal Mott insulator (V0.95Cr0.05)2O3 show that the resistive switching is associated with the creation of a conducting filamentary path consisting in an isostructural compressed phase without any chemical nor symmetry change. This clearly evidences that the resistive switching mechanism is inherited from the bandwidth-controlled Mott transition. This discovery might hence ease the development of a new branch of electronics dubbed Mottronics.
104 - S. T. Chui , Ning Wang , 2021
We investigated metal-insulator transitions for double layer two-dimensional electron hole systems in transition metal dicalcogenides (TMDC) stacked on opposite sides of thin layers of boron nitride (BN). The interparticle interaction is calculated by including the screening due to the polarization charges at different interfaces, including that at the encapsultion and the substrate of experimental structures. We compute and compare the energies of the metallic electron-hole plasma and the newly proposed insulating exciton solid with fixed-node diffusion Monte Carlo simulation including the high valley degeneracy of the electron bands. We found that for some examples of current experimental structures, the transition electron/hole density is in an accessible range of g x 10^12 /cm*2 with g between 4.1 and 14.5 for spacer thicknesses between 2.5 and 7.5 nm. Our result raise the possibility of exploiting this effect for logic device applications.
We compute the spin-active scattering matrix and the local spectrum at the interface between a metal and a three-dimensional topological band insulator. We show that there exists a critical incident angle at which complete (100%) spin flip reflection occurs and the spin rotation angle jumps by $pi$. We discuss the origin of this phenomena, and systematically study the dependence of spin-flip and spin-conserving scattering amplitudes on the interface transparency and metal Fermi surface parameters. The interface spectrum contains a well-defined Dirac cone in the tunneling limit, and smoothly evolves into a continuum of metal induced gap states for good contacts. We also investigate the complex band structure of Bi$_2$Se$_3$.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا