Do you want to publish a course? Click here

Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

221   0   0.0 ( 0 )
 Added by Gorky Shaw
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB, and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data is complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.



rate research

Read More

Topological spin configurations in proximity to a superconductor have recently attracted great interest due to the potential application of the former in spintronics and also as another platform for realizing non-trivial topological superconductors. Their application in these areas requires precise knowledge of the existing exchange fields and/or the stray-fields which are therefore essential for the study of these systems. Here, we determine the effective stray-field and the Meissner currents in a Superconductor/Ferromagnet/Superconductor (S/F/S) junction produced by various nonhomogenous magnetic textures in the F. The inhomogeneity arises either due to a periodic structure with flat domain walls (DW) or is caused by an isolated chiral magnetic skyrmion (Sk). We consider both Bloch- and N{e}el-type Sk and also analyze in detail the periodic structures of different types of DWs-- that is Bloch-type DW (BDW) and N{e}el-type DW (NDW) of finite width with in- and out-of-plane magnetization vector. The spatial dependence of the fields and Meissner currents are shown to be qualitatively different for the case of Bloch- and N{e}el-type magnetic textures. While the spatial distributions in the upper and lower S are identical for Bloch-type Sk and DWs they are asymmetric for the case of N{e}el-type magnetic textures. The depairing factor, which determines the critical temperature and which is related to vector potential of the stray-field, can have its maximum at the center of a magnetic domain but also, as we show, above the DW. For Sks the maximum is located at a finite distance within the Sk radius. Based on this, we study the nucleation of superconductivity in the presence of DWs. Because of the asymmetry for N{e}el-type structures, the critical temperature in the upper and lower S is expected to be different. The obtained results can also be applied to S/F bilayers.
We study theoretically spontaneous currents and magnetic field induced in a superconductor-ferromagnet (S-F) bilayer due to direct and inverse proximity effects. The induced currents {are Meissner currents that appear even in the absence of an external magnetic field due to the magnetic moment in the ferromagnet }and {to the magnetization } in the superconductor . The latter is induced by the inverse proximity effect over a distance of the order of the superconducting correlation length $xi _{S}$. On the other hand the magnetic induction $B$, caused by Meissner currents, penetrates the S film over the London length $lambda _{S}$. Even though $lambda _{S}$ usually exceeds considerably the correlation length, the amplitude and sign of $B$ at distances much larger than $xi _{S}$ depends crucially on the strength of the exchange energy in the ferromagnet and on the magnetic moment induced in the in the S layer.
125 - Xavier Montiel 2009
We study the influence of the configuration of the majority and minority spin subbands of electron spectra on the properties of atomic-scaled superconductor-ferromagnet S-F-S and F-S-F hybrid structures. At low temperatures, the S/F/S junction is either a 0 or junction depending on the energy shift between S and F materials and the anisotropy of the Fermi surfaces. We found that the spin switch effect in F/S/F system can be reversed if the minority spin electron spectra in F metal is of the hole-like type.
Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the inverse proximity effect, in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the lights optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al..
Ferromagnet/superconductor heterostructures allow for the combination of unique physical phenomena offered by the both fields of magnetism and superconductivity. It was shown recently that spin waves can be efficiently scattered in such structures by a lattice of static or moving magnetic flux quanta (Abrikosov vortices), resulting in bandgaps in the spin-wave spectra. Here, we realize a nonreciprocal motion of a vortex lattice in nanoengineered symmetric and asymmetric pinning landscapes and investigate the non-reciprocal scattering of magnons on fluxons. We demonstrate that the magnon bandgap frequencies can be tuned by the application of a low-dissipative transport current and by its polarity reversal. Furthermore, we exploit the rectifying (vortex diode or ratchet) effect by the application of a 100 MHz-frequency ac current to deliberately realize bandgap up- or downshifts during one ac halfwave while keeping the bandgap frequency constant during the other ac halfwave. The investigated phenomena allow for the realization of energy-efficient hybrid magnonic devices, such as microwave filters with an ultra-high bandgap tunability of 10 GHz/mA and a fast modulation of the transmission characteristics on the 10 ns time scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا