Do you want to publish a course? Click here

Uniquely $K^{(k)}_r$-saturated Hypergraphs

107   0   0.0 ( 0 )
 Added by Stephen Hartke
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we generalize the concept of uniquely $K_r$-saturated graphs to hypergraphs. Let $K_r^{(k)}$ denote the complete $k$-uniform hypergraph on $r$ vertices. For integers $k,r,n$ such that $2le k <r<n$, a $k$-uniform hypergraph $H$ with $n$ vertices is uniquely $K_r^{(k)}$-saturated if $H$ does not contain $K_r^{(k)}$ but adding to $H$ any $k$-set that is not a hyperedge of $H$ results in exactly one copy of $K_r^{(k)}$. Among uniquely $K_r^{(k)}$-saturated hypergraphs, the interesting ones are the primitive ones that do not have a dominating vertex---a vertex belonging to all possible ${n-1choose k-1}$ edges. Translating the concept to the complements of these hypergraphs, we obtain a natural restriction of $tau$-critical hypergraphs: a hypergraph $H$ is uniquely $tau$-critical if for every edge $e$, $tau(H-e)=tau(H)-1$ and $H-e$ has a unique transversal of size $tau(H)-1$. We have two constructions for primitive uniquely $K_r^{(k)}$-saturated hypergraphs. One shows that for $k$ and $r$ where $4le k<rle 2k-3$, there exists such a hypergraph for every $n>r$. This is in contrast to the case $k=2$ and $r=3$ where only the Moore graphs of diameter two have this property. Our other construction keeps $n-r$ fixed; in this case we show that for any fixed $kge 2$ there can only be finitely many examples. We give a range for $n$ where these hypergraphs exist. For $n-r=1$ the range is completely determined: $k+1le n le {(k+2)^2over 4}$. For larger values of $n-r$ the upper end of our range reaches approximately half of its upper bound. The lower end depends on the chromatic number of certain Johnson graphs.



rate research

Read More

92 - Luyining Gan , Jie Han , Lin Sun 2021
Let $Y_{3,2}$ be the $3$-uniform hypergraph with two edges intersecting in two vertices. Our main result is that any $n$-vertex 3-uniform hypergraph with at least $binom{n}{3} - binom{n-m+1}{3} + o(n^3)$ edges contains a collection of $m$ vertex-disjoint copies of $Y_{3,2}$, for $mle n/7$. The bound on the number of edges is asymptotically best possible. This can be viewed as a generalization of the ErdH{o}s Matching Conjecture.We then use this result together with the absorbing method to determine the asymptotically best possible minimum $(k-3)$-degree threshold for $ell$-Hamiltonicity in $k$-graphs, where $kge 7$ is odd and $ell=(k-1)/2$. Moreover, we give related results on $ Y_{k,b} $-tilings and Hamilton $ ell $-cycles with $ d $-degree for some other $ k,ell,d $.
93 - Pengli Lu , Yulong Xue 2020
The graph entropy describes the structural information of graph. Motivated by the definition of graph entropy in general graphs, the graph entropy of hypergraphs based on Laplacian degree are defined. Some results on graph entropy of simple graphs are extended to k-uniform hypergraphs. Using an edge-moving operation, the maximum and minimum graph entropy based on Laplacian degrees are determined in k-uniform hypertrees, unicyclic k-uniform hypergraphs, bicyclic k-uniform hypergraphs and k-uniform chemical hypertrees, respectively, and the corresponding extremal graphs are determined.
111 - Fabio Botler , Lucas Colucci , 2020
Let $chi_k(G)$ denote the minimum number of colors needed to color the edges of a graph $G$ in a way that the subgraph spanned by the edges of each color has all degrees congruent to $1 pmod k$. Scott [{em Discrete Math. 175}, 1-3 (1997), 289--291] proved that $chi_k(G)leq5k^2log k$, and thus settled a question of Pyber [{em Sets, graphs and numbers} (1992), pp. 583--610], who had asked whether $chi_k(G)$ can be bounded solely as a function of $k$. We prove that $chi_k(G)=O(k)$, answering affirmatively a question of Scott.
Halin showed that every edge minimal, k-vertex connected graph has a vertex of degree k. In this note, we prove the analogue to Halins theorem for edge-minimal, k-edge-connected graphs. We show there are two vertices of degree k in every edge-minimal, k-edge-connected graph.
A $k$-matching $M$ of a graph $G=(V,E)$ is a subset $Msubseteq E$ such that each connected component in the subgraph $F = (V,M)$ of $G$ is either a single-vertex graph or $k$-regular, i.e., each vertex has degree $k$. In this contribution, we are interested in $k$-matchings within the four standard graph products: the Cartesian, strong, direct and lexicographic product. As we shall see, the problem of finding non-empty $k$-matchings ($kgeq 3$) in graph products is NP-complete. Due to the general intractability of this problem, we focus on distinct polynomial-time constructions of $k$-matchings in a graph product $Gstar H$ that are based on $k_G$-matchings $M_G$ and $k_H$-matchings $M_H$ of its factors $G$ and $H$, respectively. In particular, we are interested in properties of the factors that have to be satisfied such that these constructions yield a maximum $k$-matching in the respective products. Such constructions are also called well-behaved and we provide several characterizations for this type of $k$-matchings. Our specific constructions of $k$-matchings in graph products satisfy the property of being weak-homomorphism preserving, i.e., constructed matched edges in the product are never projected to unmatched edges in the factors. This leads to the concept of weak-homomorphism preserving $k$-matchings. Although the specific $k$-matchings constructed here are not always maximum $k$-matchings of the products, they have always maximum size among all weak-homomorphism preserving $k$-matchings. Not all weak-homomorphism preserving $k$-matchings, however, can be constructed in our manner. We will, therefore, determine the size of maximum-sized elements among all weak-homomorphims preserving $k$-matching within the respective graph products, provided that the matchings in the factors satisfy some general assumptions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا