No Arabic abstract
We monitored BL Lacertae frequently during 2014 - 2016 when it was generally in a high state. We searched for intra-day variability for 43 nights using quasi-simultaneous measurements in the B, V, R, and I bands (totaling 143 light curves); the typical sampling interval was about eight minutes. On hour-like timescales, BL Lac exhibited significant variations during 13 nights in various optical bands. Significant spectral variations are seen during most of these nights such that the optical spectrum becomes bluer when brighter. The amplitude of variability is usually greater for longer observations but is lower when BL Lac is brighter. No evidence for periodicities or characteristic variability time-scales in the light curves was found. The color variations are mildly chromatic on long timescales.
We present the results of extensive multi-band intra-night optical monitoring of BL Lacertae during 2010--2012. BL Lacertae was very active in this period and showed intense variability in almost all wavelengths. We extensively observed it for a total for 38 nights; on 26 of them observations were done quasi-simultaneously in B, V, R and I bands (totaling 113 light curves), with an average sampling interval of around 8 minutes. BL Lacertae showed significant variations on hour-like timescales in a total of 19 nights in different optical bands. We did not find any evidence for periodicities or characteristic variability time-scales in the light curves. The intranight variability amplitude is generally greater at higher frequencies and decreases as the source flux increases. We found spectral variations in BL Lacertae in the sense that the optical spectrum becomes flatter as the flux increases but in several flaring states deviates from the linear trend suggesting different jet components contributing to the emission at different times.
We monitored BL Lacertae for 13 nights in optical B, V, R, and I bands during October and November 2014 including quasi-simultaneous observations in V and R bands using two optical telescopes in India. We have studied multi-band optical flux variations, colour variation and spectral changes in this blazar. Source was found to be active during the whole monitoring period and showed significant intraday variability on 3 nights in V and R filters while displayed hints of variability on 6 other dates in R passband and on 2 nights in V filter. From the colour-magnitude analysis of the source we found that the spectra of the target gets flatter as it becomes brighter on intra-night timescale. Using discrete correlation technique, we found that intraday light curves in both V and R filters are almost consistent and well correlated with each other. We also generated spectral energy distribution (SED) of the target using the B, V, R, and I data sets for all 13 nights which could help us investigate the physical process responsible for the observed variations in BL Lacertae objects. We also discuss possible physical causes of the observed spectral variability.
For a new sample of 8 weak-line-quasars (WLQs) we report a sensitive search in 20 intranight monitoring sessions, for blazar-like optical flux variations on hour-like and longer time scale (day/month/year$-$like). The sample consists exclusively of the WLQs that are not radio$-$loud and have either been classified as `radio-weak probable BL Lac candidates and/or are known to have exhibited at least one episode of large, blazar$-$like optical variability. Whereas only a hint of intra$-$night variability is seen for two of these WLQs, J104833.5$+$620305.0(z = 0.219) and J133219.6$+$622715.9 (z = 3.15), statistically significant inter$-$night variability at a few per cent level is detected for three of the sources, including the radio-intermediate WLQ J133219.6$+$622715.9 (z = 3.15) and the well known bona$-$fide radio$-$quiet WLQs J121221.5$+$534128.0 (z = 3.10) and WLQ J153259.9$-$003944.1 (z = 4.62). In the rest$-$frame, this variability is intra-day and in the far$-$UV band. On the time scale of a decade, we find for three of the WLQs large brightness changes, amounting to 1.655$pm$0.009, 0.163$pm$0.010 and 0.144$pm$0.018 mag, for J104833.5$+$620305.0, J123743.1$+$630144.9 and J232428.4$+$144324.4, respectively. Whereas the latter two are confirmed radio-quiet WLQs, the extragalactic nature of J104833.5$+$620305.0 remains to be well established, thanks to the absence of any feature(s) in its available optical spectra. The present study forms a part of our ongoing campaign of intranight optical monitoring of radio quiet weak-line quasars, in order to improve the understanding of this enigmatic class of Active Galactic Nuclei and to look among them for a possible tiny, elusive population of radio-quiet BL Lacs.
We monitored BL Lacertae simultaneously in the optical B, V, R and I bands for 13 nights during the period 2012-2016. The variations were well correlated in all bands and the source showed significant intraday variability (IDV). We also studied its optical flux and colour behaviour, and searched for inter-band time lags. A strong bluer-when-brighter chromatism was found on the intra-night time-scale. The spectral changes are not sensitive to the host galaxy contribution. Cross-correlation analysis revealed possible time delay of about 10 min between variations in the V and R bands. We interpreted the observed flares in terms of the model consisting of individual synchrotron pulses.
We monitored BL Lacertae in the B, V, R and I bands for 14 nights during the period of 2016-2018. The source showed significant intraday variability on 12 nights. We performed colour-magnitude analysis and found that the source exhibited bluer-when-brighter chromatism. This bluer-when-brighter behavior is at least partly caused by the larger variation amplitude at shorter wavelength. The variations at different wavelengths are well correlated and show no inter-band time lag.