No Arabic abstract
Spaniol and Andrade introduced grvitoelectromagnetism in TEGR by considering superpotentials, times the determinant of tetrads, as the gravitoelectromagnetic fields. However, since this defined gravitoelectromagnetic field strength does not give rise to a complete set of Maxwell-like equations, we propose an alternative definition of the gravitoelectromagnetic field strength: instead of superpotentials, torsions are taken as the gravitoelectromagnetic field strengths. Based on this new proposal we are able to derive a complete set of Maxwell-like equations. We then apply them to obtain explicit expressions of the gravitoelectromagnetic fields both in Schwarzchilds spacetime and for gravitational waves.
This work generalizes the treatment of flat spin connections in the teleparallel equivalent of general relativity. It is shown that a general flat spin connection form a subspace in the affine space of spin connections which is dynamically decoupled from the tetrad and the matter fields. A translation in the affine subspace introduces a torsion term without changing the tetrad. Instead, the change in the torsion is related to the introduction of a global acceleration field term that introduces Lorentz inertial effects in the reference frame. The dynamics of the gravitationally coupled matter fields remains however equivalent regardless of the flat spin connection chosen. The implications of the break of this invariance by a general $f(T)$ and $f(R)$ is discussed.
In cite{Bahamonde:2019zea}, a spherically symmetric black hole (BH) was derived from the quadratic form of $f(T)$. Here we derive the associated energy, invariants of curvature, and torsion of this BH and demonstrate that the higher-order contribution of torsion renders the singularity weaker compared with the Schwarzschild BH of general relativity (GR). Moreover, we calculate the thermodynamic quantities and reveal the effect of the higher--order contribution on these quantities. Therefore, we derive a new spherically symmetric BH from the cubic form of $f(T)=T+epsilonBig[frac{1}{2}alpha T^2+frac{1}{3}beta T^3Big]$, where $epsilon<<1$, $alpha$, and $beta$ are constants. The new BH is characterized by the two constants $alpha$ and $beta$ in addition to $epsilon$. At $epsilon=0$ we return to GR. We study the physics of these new BH solutions via the same procedure that was applied for the quadratic BH. Moreover, we demonstrate that the contribution of the higher-order torsion, $frac{1}{2}alpha T^2+frac{1}{3}beta T^3$, may afford an interesting physics.
It has been shown recently that within the framework of the teleparallel equivalent of general relativity (TEGR) it is possible to define the energy density of the gravitational field. The TEGR amounts to an alternative formulation of Einsteins general relativity, not to an alternative gravity theory. The localizability of the gravitational energy has been investigated in a number of space-times with distinct topologies, and the outcome of these analises agree with previously known results regarding the exact expression of the gravitational energy, and/or with the specific properties of the space-time manifold. In this article we establish a relationship between the expression for the gravitational energy density of the TEGR and the Sparling two-forms, which are known to be closely connected with the gravitational energy. We also show that our expression of energy yields the correct value of gravitational mass contained in the conformal factor of the metric field.
The Florides solution, proposed as an alternative to the interior Schwarzschild solution, represents a static and spherically symmetric geometry with vanishing radial stresses. It is regular at the center, and is matched to an exterior Schwarzschild solution. The specific case of a constant energy density has been interpreted as the field inside an Einstein cluster. In this work, we are interested in analyzing the geometry throughout the permitted range of the radial coordinate without matching it to the Schwarzschild exterior spacetime at some constant radius hypersurface. We find an interesting picture, namely, the solution represents a three-sphere, whose equatorial two-sphere is singular, in the sense that the curvature invariants and the tangential pressure diverge. As far as we know, such singularities have not been discussed before. In the presence of a large negative cosmological constant (anti-de Sitter) the singularity is removed.
This work refers to the new formula for the superpotential Uikl in conservation laws in general relativity satisfying the integral and differential conservation laws within the Schwarzschild metric. The new superpotential is composed of two terms. The first term is based on Mollers concept and its a function of the metric gik and its first derivative only. The second term is the antisymmetric tensor density of weight plus one and it consists of higher derivatives of the metric gik. Although the new superpotential consists of higher derivatives of the metric gik it might bring a new evaluation of the conservative quantities in general relativity