Do you want to publish a course? Click here

Segmented coronagraph design and analysis (SCDA): an initial design study of apodized vortex coronagraphs

122   0   0.0 ( 0 )
 Added by Garreth Ruane
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The segmented coronagraph design and analysis (SCDA) study is a coordinated effort, led by Stuart Shaklan (JPL) and supported by NASAs Exoplanet Exploration Program (ExEP), to provide efficient coronagraph design concepts for exoplanet imaging with future segmented aperture space telescopes. This document serves as an update on the apodized vortex coronagraph designs devised by the Caltech/JPL SCDA team. Apodized vortex coronagraphs come in two flavors, where the apodization is achieved either by use of 1) a gray-scale semi-transparent pupil mask or 2) a pair of deformable mirrors in series. Each approach has attractive benefits. This document presents a comprehensive review of the former type. Future theoretical investigations will further explore the use of deformable mirrors for apodization.



rate research

Read More

High contrast imaging is the primary path to the direct detection and characterization of Earth-like planets around solar-type stars; a cleverly designed internal coronagraph suppresses the light from the star, revealing the elusive circumstellar companions. However, future large-aperture telescopes ($>$4~m in diameter) will likely have segmented primary mirrors, which causes additional diffraction of unwanted stellar light. Here we present the first high contrast laboratory demonstration of an apodized vortex coronagraph (AVC), in which an apodizer is placed upstream of a vortex focal plane mask to improve its performance with a segmented aperture. The gray-scale apodization is numerically optimized to yield a better sensitivity to faint companions assuming an aperture shape similar to the LUVOIR-B concept. Using wavefront sensing and control over a one-sided dark hole, we achieve a raw contrast of $2times10^{-8}$ in monochromatic light at 775~nm, and a raw contrast of $4times10^{-8}$ in a 10% bandwidth. These results open the path to a new family of coronagraph designs, optimally suited for next-generation segmented space telescopes.
Modern coronagraph design relies on advanced, large-scale optimization processes that require an ever increasing amount of computational resources. In this paper, we restrict ourselves to the design of Apodized Pupil Lyot Coronagraphs (APLCs). To produce APLC designs for future giant space telescopes, we require a fine sampling for the apodizer to resolve all small features, such as segment gaps, in the telescope pupil. Additionally, we require the coronagraph to operate in broadband light and be insensitive to small misalignments of the Lyot stop. For future designs we want to include passive suppression of low-order aberrations and finite stellar diameters. The memory requirements for such an optimization would exceed multiple terabytes for the problem matrix alone. We therefore want to reduce the number of variables and constraints to minimize the size of the problem matrix. We show how symmetries in the pupil and Lyot stop are expressed in the complete optimization problem, and allow removal of both variables and constraints. Each mirror symmetry reduces the problem size by a factor of four. Secondly, we introduce progressive refinement, which uses low-resolution optimizations as a prior for higher resolutions. This lets us remove the majority of variables from the high-resolution optimization. Together these two improvements require up to 256x less computer memory, with a corresponding speed increase. This allows for greater exploration of the phase space of the focal-plane mask and Lyot-stop geometry, and easier simulation of sensitivity to Lyot-stop misalignments. Moreover, apodizers can now be optimized at their native manufactured resolution.
A coronagraphic starlight suppression system situated on a future flagship space observatory offers a promising avenue to image Earth-like exoplanets and search for biomarkers in their atmospheric spectra. One NASA mission concept that could serve as the platform to realize this scientific breakthrough is the Large UV/Optical/IR Surveyor (LUVOIR). Such a mission would also address a broad range of topics in astrophysics with a multiwavelength suite of instruments. The apodized pupil Lyot coronagraph (APLC) is one of several coronagraph design families that the community is assessing as part of NASAs Exoplanet Exploration Program Segmented aperture coronagraph design and analysis (SCDA) team. The APLC is a Lyot-style coronagraph that suppresses starlight through a series of amplitude operations on the on-axis field. Given a suite of seven plausible segmented telescope apertures, we have developed an object-oriented software toolkit to automate the exploration of thousands of APLC design parameter combinations. This has enabled us to empirically establish relationships between planet throughput and telescope aperture geometry, inner working angle, bandwidth, and contrast level. In parallel with the parameter space exploration, we have investigated several strategies to improve the robustness of APLC designs to fabrication and alignment errors. We also investigate the combination of APLC with wavefront control or complex focal plane masks to improve inner working angle and throughput. Preliminary scientific yield evaluations based on design reference mission simulations indicate the APLC is a very competitive concept for surveying the local exoEarth population with a mission like LUVOIR.
64 - G. Ruane , A. Riggs , C. T. Coker 2018
Coronagraph instruments on future space telescopes will enable the direct detection and characterization of Earth-like exoplanets around Sun-like stars for the first time. The quest for the optimal optical coronagraph designs has made rapid progress in recent years thanks to the Segmented Coronagraph Design and Analysis (SCDA) initiative led by the Exoplanet Exploration Program at NASAs Jet Propulsion Laboratory. As a result, several types of high-performance designs have emerged that make use of dual deformable mirrors to (1) correct for optical aberrations and (2) suppress diffracted starlight from obstructions and discontinuities in the telescope pupil. However, the algorithms used to compute the optimal deformable mirror surface tend to be computationally intensive, prohibiting large scale design surveys. Here, we utilize the Fast Linearized Coronagraph Optimizer (FALCO), a tool that allows for rapid optimization of deformable mirror shapes, to explore trade-offs in coronagraph designs for obstructed and segmented space telescopes. We compare designs for representative shaped pupil Lyot and vortex coronagraphs, two of the most promising concepts for the LUVOIR space mission concept. We analyze the optical performance of each design, including their throughput and ability to passively suppress light from partially resolved stars in the presence of low-order aberrations. Our main result is that deformable mirror based apodization can sufficiently suppress diffraction from support struts and inter-segment gaps whose widths are on the order of $sim$0.1% of the primary mirror diameter to detect Earth-sized planets within a few tens of milliarcseconds from the star.
A concept of an axi-symmetric dish as antenna reflector for the next generation radio telescope - the Square Kilometre Array (SKA) - is presented. The reflector is based on the use of novel thermoplastic composite material (reinforced with carbon fibre) in the context of the telescope design with wide band single pixel feeds. The baseline of this design represents an array of 100s to 1000s reflector antennas of 15-m diameter and covers frequencies from <1 to 10 GHz. The purpose of our study is the analysis of the production cost of the dish and its performance in combination with a realistic wideband feed (such as the Eleven Antenna feed) over a wide frequency band and a range of elevation angles. The presented initial simulation results inidicate the potential of the proposed dish concept for low-cost and mass production and demonstrate sensitivity comparable to that of the presently considered off-set Gregorian reflector antenna with the same projected aperture area. We expect this observation to be independent of the choice of the feed, as several other single-pixel wideband feeds (that have been reported in the literature) have similar beamwidth and phase center location, both being rather constant with frequency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا