Do you want to publish a course? Click here

High-contrast Demonstration of an Apodized Vortex Coronagraph

159   0   0.0 ( 0 )
 Added by Jorge Llop-Sayson
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

High contrast imaging is the primary path to the direct detection and characterization of Earth-like planets around solar-type stars; a cleverly designed internal coronagraph suppresses the light from the star, revealing the elusive circumstellar companions. However, future large-aperture telescopes ($>$4~m in diameter) will likely have segmented primary mirrors, which causes additional diffraction of unwanted stellar light. Here we present the first high contrast laboratory demonstration of an apodized vortex coronagraph (AVC), in which an apodizer is placed upstream of a vortex focal plane mask to improve its performance with a segmented aperture. The gray-scale apodization is numerically optimized to yield a better sensitivity to faint companions assuming an aperture shape similar to the LUVOIR-B concept. Using wavefront sensing and control over a one-sided dark hole, we achieve a raw contrast of $2times10^{-8}$ in monochromatic light at 775~nm, and a raw contrast of $4times10^{-8}$ in a 10% bandwidth. These results open the path to a new family of coronagraph designs, optimally suited for next-generation segmented space telescopes.



rate research

Read More

The segmented coronagraph design and analysis (SCDA) study is a coordinated effort, led by Stuart Shaklan (JPL) and supported by NASAs Exoplanet Exploration Program (ExEP), to provide efficient coronagraph design concepts for exoplanet imaging with future segmented aperture space telescopes. This document serves as an update on the apodized vortex coronagraph designs devised by the Caltech/JPL SCDA team. Apodized vortex coronagraphs come in two flavors, where the apodization is achieved either by use of 1) a gray-scale semi-transparent pupil mask or 2) a pair of deformable mirrors in series. Each approach has attractive benefits. This document presents a comprehensive review of the former type. Future theoretical investigations will further explore the use of deformable mirrors for apodization.
The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^{-6}$ for a companion with angular displacement as small as $4~lambda/D$ with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or optimized pupil plane phase element alone.
Coronagraphy is a powerful technique to achieve high contrast imaging and hence to image faint companions around bright targets. Various concepts have been used in the visible and near-infrared regimes, while coronagraphic applications in the mid-infrared remain nowadays largely unexplored. Vector vortex phase masks based on concentric subwavelength gratings show great promise for such applications. We aim at producing and validating the first high-performance broadband focal plane phase mask coronagraphs for applications in the mid-infrared regime, and in particular the L band with a fractional bandwidth of ~16% (3.5-4.1 mu m). Based on rigorous coupled wave analysis, we designed an annular groove phase mask (AGPM) producing a vortex effect in the L band, and etched it onto a series of diamond substrates. The grating parameters were measured by means of scanning electron microscopy. The resulting components were then tested on a mid-infrared coronagraphic test bench. A broadband raw null depth of 2 x 10^{-3} was obtained for our best L-band AGPM after only a few iterations between design and manufacturing. This corresponds to a raw contrast of about 6 x 10^{-5} (10.5 mag) at 2lambda/D. This result is fully in line with our projections based on rigorous coupled wave analysis modeling, using the measured grating parameters. The sensitivity to tilt and focus has also been evaluated. After years of technological developments, mid-infrared vector vortex coronagraphs finally become a reality and live up to our expectations. Based on their measured performance, our L-band AGPMs are now ready to open a new parameter space in exoplanet imaging at major ground-based observatories.
Using an optical vortex coronagraph and simple adaptive optics techniques we have made the first convincing demonstration of an optical vortex coronagraph that is coupled to a star gazing telescope. In particular we suppressed by 97% the primary star of a barely resolvable binary system, Cor Caroli, having an effective angular separation of only 1.4 lambda/D. The secondary star suffered no suppression.
Modern coronagraph design relies on advanced, large-scale optimization processes that require an ever increasing amount of computational resources. In this paper, we restrict ourselves to the design of Apodized Pupil Lyot Coronagraphs (APLCs). To produce APLC designs for future giant space telescopes, we require a fine sampling for the apodizer to resolve all small features, such as segment gaps, in the telescope pupil. Additionally, we require the coronagraph to operate in broadband light and be insensitive to small misalignments of the Lyot stop. For future designs we want to include passive suppression of low-order aberrations and finite stellar diameters. The memory requirements for such an optimization would exceed multiple terabytes for the problem matrix alone. We therefore want to reduce the number of variables and constraints to minimize the size of the problem matrix. We show how symmetries in the pupil and Lyot stop are expressed in the complete optimization problem, and allow removal of both variables and constraints. Each mirror symmetry reduces the problem size by a factor of four. Secondly, we introduce progressive refinement, which uses low-resolution optimizations as a prior for higher resolutions. This lets us remove the majority of variables from the high-resolution optimization. Together these two improvements require up to 256x less computer memory, with a corresponding speed increase. This allows for greater exploration of the phase space of the focal-plane mask and Lyot-stop geometry, and easier simulation of sensitivity to Lyot-stop misalignments. Moreover, apodizers can now be optimized at their native manufactured resolution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا