Do you want to publish a course? Click here

An Axi-Symmetric Segmented Composite SKA Dish Design: Performance and Production Analysis

331   0   0.0 ( 0 )
 Added by Marianna Ivashina
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

A concept of an axi-symmetric dish as antenna reflector for the next generation radio telescope - the Square Kilometre Array (SKA) - is presented. The reflector is based on the use of novel thermoplastic composite material (reinforced with carbon fibre) in the context of the telescope design with wide band single pixel feeds. The baseline of this design represents an array of 100s to 1000s reflector antennas of 15-m diameter and covers frequencies from <1 to 10 GHz. The purpose of our study is the analysis of the production cost of the dish and its performance in combination with a realistic wideband feed (such as the Eleven Antenna feed) over a wide frequency band and a range of elevation angles. The presented initial simulation results inidicate the potential of the proposed dish concept for low-cost and mass production and demonstrate sensitivity comparable to that of the presently considered off-set Gregorian reflector antenna with the same projected aperture area. We expect this observation to be independent of the choice of the feed, as several other single-pixel wideband feeds (that have been reported in the literature) have similar beamwidth and phase center location, both being rather constant with frequency.



rate research

Read More

The segmented coronagraph design and analysis (SCDA) study is a coordinated effort, led by Stuart Shaklan (JPL) and supported by NASAs Exoplanet Exploration Program (ExEP), to provide efficient coronagraph design concepts for exoplanet imaging with future segmented aperture space telescopes. This document serves as an update on the apodized vortex coronagraph designs devised by the Caltech/JPL SCDA team. Apodized vortex coronagraphs come in two flavors, where the apodization is achieved either by use of 1) a gray-scale semi-transparent pupil mask or 2) a pair of deformable mirrors in series. Each approach has attractive benefits. This document presents a comprehensive review of the former type. Future theoretical investigations will further explore the use of deformable mirrors for apodization.
The Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21~cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constant declination. We describe the design, calibration, noise level, and stability of this instrument based on the analysis of about $sim 5 %$ of 6,200 hours of on-sky observations through October, 2019. Beam pattern determinations using drones and the transit of bright sources are in good agreement, and compatible with electromagnetic simulations. Combining all the baselines, we make maps around bright sources and show that the array behaves as expected. A few hundred hours of observations at different declinations have been used to study the array geometry and pointing imperfections, as well as the instrument noise behaviour. We show that the system temperature is below 80~K for most feed antennas, and that noise fluctuations decrease as expected with integration time, at least up to a few hundred seconds. Analysis of long integrations, from 10 nights of observations of the North Celestial Pole, yielded visibilities with amplitudes of 20-30~mK, consistent with the expected signal from the NCP radio sky with $<10,$mK precision for $1 ~mathrm{MHz} times 1~ mathrm{min}$ binning. Hi-pass filtering the spectra to remove smooth spectrum signal yields a residual consistent with zero signal at the $0.5,$mK level.
This report was submitted as part of the SKA Low Frequency Aperture Array Critical Design Review describing the design of the SKA1-LOW station that took place between 2013 and 2018. The SKA1 LOW field station is inscribed in a circular area having an effective station diameter (centre to centre) of 38 meters and has 256 SKALA4 elements. This document describes the electromagnetic design of the field station. In particular it describes the layout design and the electromagnetic modelling and characteristics of the station. This document describes the effects associated with the layout and array such as mutual coupling effects, side lobe pattern and beam shape (eg. smoothness, calibration models) and presents the state of the art of our ability to measure the array performance and validate the simulation work. The current LFAA field node requirements, derived from the SKA L1 requirements, have evolved over the last years since the LFAA PDR and the System Baseline Design. The SKA1 LOW field station has been designed to meet those requirements and has therefore tracked their evolution (eg. sensitivity requirements, array diameter, etc.). The aforementioned requirements represent a very tight space with a desire for very high sensitivity over a large frequency range (7 to 1) and wide field of view (90 degrees cone around zenith) while keeping the station diameter to a minimum, so as the filling factor but at the same time allowing for sufficient space between antennas to allow for easy maintenances, amongst many others. This results in a complex design.
We construct a pipeline for simulating weak lensing cosmology surveys with the Square Kilometre Array (SKA), taking as inputs telescope sensitivity curves; correlated source flux, size and redshift distributions; a simple ionospheric model; source redshift and ellipticity measurement errors. We then use this simulation pipeline to optimise a 2-year weak lensing survey performed with the first deployment of the SKA (SKA1). Our assessments are based on the total signal-to-noise of the recovered shear power spectra, a metric that we find to correlate very well with a standard dark energy figure of merit. We first consider the choice of frequency band, trading off increases in number counts at lower frequencies against poorer resolution; our analysis strongly prefers the higher frequency Band 2 (950-1760 MHz) channel of the SKA-MID telescope to the lower frequency Band 1 (350-1050 MHz). Best results would be obtained by allowing the centre of Band 2 to shift towards lower frequency, around 1.1 GHz. We then move on to consider survey size, finding that an area of 5,000 square degrees is optimal for most SKA1 instrumental configurations. Finally, we forecast the performance of a weak lensing survey with the second deployment of the SKA. The increased survey size (3$pi$,steradian) and sensitivity improves both the signal-to-noise and the dark energy metrics by two orders of magnitude.
A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, non- axisymmetry across the inertial and dissipation ranges is quantified using in-situ observations from Cluster. The observed inertial range non- axisymmetry is reproduced by a fly through sampling of a Direct Numerical Simulation of MHD turbulence. Furthermore, fly through sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in non- axisymmetry with power spectral exponent. The observed non-axisymmetric anisotropy may thus simply arise as a sampling effect related to Taylors hypothesis and is not related to the plasma dynamics itself.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا