No Arabic abstract
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date, one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective, which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics (e.g., mean and covariance) conditioned on the systems measurement data. This article offers a systematic introduction of the Bayesian state estimation framework and reviews various Kalman filtering (KF) techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including the Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation forward to more complicated problems such as simultaneous state and parameter/input estimation.
The Kalman filter (KF) is used in a variety of applications for computing the posterior distribution of latent states in a state space model. The model requires a linear relationship between states and observations. Extensions to the Kalman filter have been proposed that incorporate linear approximations to nonlinear models, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). However, we argue that in cases where the dimensionality of observed variables greatly exceeds the dimensionality of state variables, a model for $p(text{state}|text{observation})$ proves both easier to learn and more accurate for latent space estimation. We derive and validate what we call the discriminative Kalman filter (DKF): a closed-form discriminative version of Bayesian filtering that readily incorporates off-the-shelf discriminative learning techniques. Further, we demonstrate that given mild assumptions, highly non-linear models for $p(text{state}|text{observation})$ can be specified. We motivate and validate on synthetic datasets and in neural decoding from non-human primates, showing substantial increases in decoding performance versus the standard Kalman filter.
Outliers can contaminate the measurement process of many nonlinear systems, which can be caused by sensor errors, model uncertainties, change in ambient environment, data loss or malicious cyber attacks. When the extended Kalman filter (EKF) is applied to such systems for state estimation, the outliers can seriously reduce the estimation accuracy. This paper proposes an innovation saturation mechanism to modify the EKF toward building robustness against outliers. This mechanism applies a saturation function to the innovation process that the EKF leverages to correct the state estimation. As such, when an outlier occurs, the distorting innovation is saturated and thus prevented from damaging the state estimation. The mechanism features an adaptive adjustment of the saturation bound. The design leads to the development robust EKF approaches for continuous- and discrete-time systems. They are proven to be capable of generating bounded-error estimation in the presence of bounded outlier disturbances. An application study about mobile robot localization is presented, with the numerical simulation showing the efficacy of the proposed design. Compared to existing methods, the proposed approaches can effectively reject outliers of various magnitudes, types and durations, at significant computational efficiency and without requiring measurement redundancy.
Accurate identification of parameters of load models is essential in power system computations, including simulation, prediction, and stability and reliability analysis. Conventional point estimation based composite load modeling approaches suffer from disturbances and noises and provide limited information of the system dynamics. In this work, a statistic (Bayesian Estimation) based distribution estimation approach is proposed for both static (ZIP) and dynamic (Induction Motor) load modeling. When dealing with multiple parameters, Gibbs sampling method is employed. In each iteration, the proposal samples each parameter while keeps others fixed. The proposed method provides a distribution estimation of load models coefficients and is robust to measurement errors.
Legged robots require knowledge of pose and velocity in order to maintain stability and execute walking paths. Current solutions either rely on vision data, which is susceptible to environmental and lighting conditions, or fusion of kinematic and contact data with measurements from an inertial measurement unit (IMU). In this work, we develop a contact-aided invariant extended Kalman filter (InEKF) using the theory of Lie groups and invariant observer design. This filter combines contact-inertial dynamics with forward kinematic corrections to estimate pose and velocity along with all current contact points. We show that the error dynamics follows a log-linear autonomous differential equation with several important consequences: (a) the observable state variables can be rendered convergent with a domain of attraction that is independent of the systems trajectory; (b) unlike the standard EKF, neither the linearized error dynamics nor the linearized observation model depend on the current state estimate, which (c) leads to improved convergence properties and (d) a local observability matrix that is consistent with the underlying nonlinear system. Furthermore, we demonstrate how to include IMU biases, add/remove contacts, and formulate both world-centric and robo-centri
We develop methods to efficiently reconstruct the topology and line parameters of a power grid from the measurement of nodal variables. We propose two compressed sensing algorithms that minimize the amount of necessary measurement resources by exploiting network sparsity, symmetry of connections and potential prior knowledge about the connectivity. The algorithms are reciprocal to established state estimation methods, where nodal variables are estimated from few measurements given the network structure. Hence, they enable an advanced grid monitoring where both state and structure of a grid are subject to uncertainties or missing information.