No Arabic abstract
The present techniques for the perturbative solution of quantum spectral curve problems in N=4 SYM and ABJM models are limited to the situation when the states quantum numbers are given explicitly as some integer numbers. These techniques are sufficient to recover full analytical structure of the conserved charges provided that we know a finite basis of functions in terms of which they could be written explicitly. It is known that in the case of N=4 SYM both the contributions of asymptotic Bethe ansatz and wrapping or finite size corrections are expressed in terms of the harmonic sums. However, in the case of ABJM model only the asymptotic contribution can still be written in the harmonic sums basis, while the wrapping corrections part can not. Moreover, the generalization of harmonic sums basis for this problem is not known. In this paper we present a Mellin space technique for the solution of multiloop Baxter equations, which is the main ingredient for the solution of corresponding quantum spectral problems, and provide explicit results for the solution of ABJM quantum spectral curve in the case of twist 1 operators in sl(2) sector for arbitrary spin values up to four loop order with explicit account for wrapping corrections. It is shown that the result for anomalous dimensions could be expressed in terms of harmonic sums decorated by the fourth root of unity factors, so that maximum transcendentality principle holds.
We present a simple general relation between tree-level exchanges in AdS and dS. This relation allows to directly import techniques and results for AdS Witten diagrams, both in position and momentum space, to boundary correlation functions in dS. In this work we apply this relation to define Mellin amplitudes and a spectral representation for exchanges in dS. We also derive the conformal block decomposition of a dS exchange, both in the direct and crossed channels, from their AdS counterparts. The relation between AdS and dS exchanges itself is derived using a recently introduced Mellin-Barnes representation for boundary correlators in momentum space, where (A)dS exchanges are straightforwardly fixed by a combination of factorisation, conformal symmetry and boundary conditions.
We conjecture the Quantum Spectral Curve equations for string theory on $AdS_3 times S^3 times T^4$ with RR charge and its CFT$_2$ dual. We show that in the large-length regime, under additional mild assumptions, the QSC reproduces the Asymptotic Bethe Ansatz equations for the massive sector of the theory, including the exact dressing phases found in the literature. The structure of the QSC shares many similarities with the previously known AdS$_5$ and AdS$_4$ cases, but contains a critical new feature - the branch cuts are no longer quadratic. Nevertheless, we show that much of the QSC analysis can be suitably generalised producing a self-consistent system of equations. While further tests are necessary, particularly outside the massive sector, the simplicity and self-consistency of our construction suggests the completeness of the QSC.
A Mellin-type representation of the graviton bulk-to-bulk propagator from Ref. 1 in terms of the integral over the product of bulk-to-boundary propagators is derived.
In this work we study the quantisation of the Seiberg-Witten curve for the E-string theory compactified on a two-torus. We find that the resulting operator expression belongs to the class of elliptic quantum curves. It can be rephrased as an eigenvalue equation with eigenvectors corresponding to co-dimension 2 defect operators and eigenvalues to co-dimension 4 Wilson surfaces wrapping the elliptic curve, respectively. Moreover, the operator we find is a generalised version of the van Diejen operator arising in the study of elliptic integrable systems. Although the microscopic representation of the co-dimension 4 defect only furnishes an $mathrm{SO}(16)$ flavour symmetry in the UV, we find an enhancement in the IR to representations in terms of affine $E_8$ characters. Finally, using the Nekrasov-Shatashvili limit of the E-string BPS partition function, we give a path integral derivation of the quantum curve.
We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.