No Arabic abstract
We construct the Mellin representation of four point conformal correlation function with external primary operators with arbitrary integer spacetime spins, and obtain a natural proposal for spinning Mellin amplitudes. By restricting to the exchange of symmetric traceless primaries, we generalize the Mellin transform for scalar case to introduce discrete Mellin variables for incorporating spin degrees of freedom. Based on the structures about spinning three and four point Witten diagrams, we also obtain a generalization of the Mack polynomial which can be regarded as a natural kinematical polynomial basis for computing spinning Mellin amplitudes using different choices of interaction vertices.
We argue that nonperturbative CFT correlation functions admit a Mellin amplitude representation. Perturbative Mellin representation readily follows. We discuss the main properties of nonperturbative CFT Mellin amplitudes: subtractions, analyticity, unitarity, Polyakov conditions and polynomial boundedness at infinity. Mellin amplitudes are particularly simple for large N CFTs and 2D rational CFTs. We discuss these examples to illustrate our general discussion. We consider subtracted dispersion relations for Mellin amplitudes and use them to derive bootstrap bounds on CFTs. We combine crossing, dispersion relations and Polyakov conditions to write down a set of extremal functionals that act on the OPE data. We check these functionals using the known 3d Ising model OPE data and other known bootstrap constraints. We then apply them to holographic theories.
In any consistent massive quantum field theory there are well known bounds on scattering amplitudes at high energies. In conformal field theory there is no scattering amplitude, but the Mellin amplitude is a well defined object analogous to the scattering amplitude. We prove bounds at high energies on Mellin amplitudes in conformal field theories, valid under certain technical assumptions. Such bounds are derived by demanding the absence of spurious singularities in position space correlators. We also conjecture a stronger bound, based on evidence from several explicit examples.
We study conformal partial waves (CPWs) in Mellin space with totally symmetric external operators of arbitrary integer spin. The exchanged spin is arbitrary, and includes mixed symmetry and (partially)-conserved representations. In a basis of CPWs recently introduced in arXiv:1702.08619, we find a remarkable factorisation of the external spin dependence in their Mellin representation. This property allows a relatively straightforward study of inversion formulae to extract OPE data from the Mellin representation of spinning 4pt correlators and in particular, to extract closed-form expressions for crossing kernels of spinning CPWs in terms of the hypergeometric function ${}_4F_3$. We consider numerous examples involving both arbitrary internal and external spins, and for both leading and sub-leading twist operators. As an application, working in general $d$ we extract new results for ${cal O}left(1/Nright)$ anomalous dimensions of double-trace operators induced by double-trace deformations constructed from single-trace operators of generic twist and integer spin. In particular, we extract the anomalous dimensions of double-trace operators $[mathcal{O}_JPhi]_{n,l}$ with ${cal O}_J$ a single-trace operator of integer spin $J$.
We present a simple general relation between tree-level exchanges in AdS and dS. This relation allows to directly import techniques and results for AdS Witten diagrams, both in position and momentum space, to boundary correlation functions in dS. In this work we apply this relation to define Mellin amplitudes and a spectral representation for exchanges in dS. We also derive the conformal block decomposition of a dS exchange, both in the direct and crossed channels, from their AdS counterparts. The relation between AdS and dS exchanges itself is derived using a recently introduced Mellin-Barnes representation for boundary correlators in momentum space, where (A)dS exchanges are straightforwardly fixed by a combination of factorisation, conformal symmetry and boundary conditions.
In this paper the general form of scattering amplitudes for massless particles with equal spins s ($s s to s s$) or unequal spins ($s_a s_b to s_a s_b$) are derived. The imposed conditions are that the amplitudes should have the lowest possible dimension, have propagators of dimension $m^{-2}$, and obey gauge invariance. It is shown that the number of momenta required for amplitudes involving particles with s > 2 is higher than the number implied by 3-vertices for higher spin particles derived in the literature. Therefore, the dimension of the coupling constants following from the latter 3-vertices has a smaller power of an inverse mass than our results imply. Consequently, the 3-vertices in the literature cannot be the first interaction terms of a gauge-invariant theory. When no spins s > 2 are present in the process the known QCD, QED or (super) gravity amplitudes are obtained from the above general amplitudes.