A Mellin-type representation of the graviton bulk-to-bulk propagator from Ref. 1 in terms of the integral over the product of bulk-to-boundary propagators is derived.
AdS dynamics for massive scalar field is studied both by solving exactly the equation of motion and by constructing bulk-boundary propagator. A Robertson-Walker-like metric is deduced from the familiar SO(2,n) invariant metric. The metric allows us to present a time-like Killing vector, which is not only invariant under space-like transformations but also invariant under the isometric transformations of SO(2,n) in certain sense. A horizon appears in this coordinate system. Singularities of field variables at boundary are demonstrated explicitly. It is shown that there is a one-to-one correspondence among the exact solutions and the bulk fields obtained by using the bulk-boundary propagator.
We present a simple general relation between tree-level exchanges in AdS and dS. This relation allows to directly import techniques and results for AdS Witten diagrams, both in position and momentum space, to boundary correlation functions in dS. In this work we apply this relation to define Mellin amplitudes and a spectral representation for exchanges in dS. We also derive the conformal block decomposition of a dS exchange, both in the direct and crossed channels, from their AdS counterparts. The relation between AdS and dS exchanges itself is derived using a recently introduced Mellin-Barnes representation for boundary correlators in momentum space, where (A)dS exchanges are straightforwardly fixed by a combination of factorisation, conformal symmetry and boundary conditions.
We develop the representation of free spinor fields in the bulk of Lorentzian anti-de Sitter space in terms of smeared operators in the dual conformal field theory. To do this we expand the bulk field in a complete set of normalizable modes, work out the extrapolate dictionary for spinor fields, and show that the bulk field can be reconstructed from its near-boundary behavior. In some cases chirality and reality conditions can be imposed in the bulk. We study the action of the CFT modular Hamiltonian on bulk fermions to show that they transform with the expected spinor Lie derivative, and we calculate bulk--boundary two-point functions starting from CFT correlators.
We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary. For both these cases the contribution in the vacuum expectation value (VEV) of the energy-momentum tensor is separated explicitly and its behavior in various asymptotic regions of the parameters is studied. It is shown that the influence of the gravitational field on the local properties of the quantum vacuum is essential at distance from the brane larger than the AdS curvature radius. In the geometry with a brane parallel to the AdS boundary the VEV of the energy-momentum tensor is considered for scalar field with the Robin boundary condition, for Dirac field with the bag boundary condition and for the electromagnetic field. In the latter case two types of boundary conditions are discussed. The first one is a generalization of the perfect conductor boundary condition and the second one corresponds to the confining boundary condition used in QCD for gluons. For the geometry of a brane intersecting the AdS boundary, the case of a scalar field is considered. The corresponding energy-momentum tensor, apart from the diagonal components, has nonzero off-diagonal component. As a consequence of the latter, in addition to the normal component, the Casimir force acquires a component parallel to the brane.
These lectures review recent developments in our understanding of the emergence of local bulk physics in AdS/CFT. The primary topics are sufficient conditions for a conformal field theory to have a semiclassical dual, bulk reconstruction, the quantum error correction interpretation of the correspondence, tensor network models of holography, and the quantum Ryu-Takayanagi formula.