Do you want to publish a course? Click here

J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons

73   0   0.0 ( 0 )
 Added by Yuri Izotov I.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z=0.3690, is characterized by a high emission-line flux ratio O32=[OIII]5007/[OII]3727=11.5. The escape fraction of the LyC radiation fesc(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Lya emission line is detected in the spectrum of J1154+2443 with a separation between the peaks Vsep of 199 km/s, one of the lowest known for Lya-emitting galaxies, implying a high fesc(Lya). Comparing the extinction-corrected Lya/Hb flux ratio with the case B value we find fesc(Lya) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O32 with increasing fesc(LyC). We also find a tight anticorrelation between fesc(LyC) and Vsep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length alpha=1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+logO/H=7.65+/-0.01, the lowest stellar mass M*=10^8.20 Msun, a similar star formation rate SFR=18.9 Msun/yr and a high specific SFR of 1.2x10^-7 yr^-1.

rate research

Read More

111 - Y. I. Izotov 2016
Following our first detection reported in Izotov et al. (2016), we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). These galaxies, at redshifts of z~0.3, are characterized by high emission-line flux ratios [OIII]5007/[OII]3727 > 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ~6%-13%, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Lyalpha emission lines are detected in the spectra of all four galaxies, compatible with predictions for Lyman continuum leakers. We find escape fractions of Lyalpha, fesc(Lyalpha) ~20%-40%, among the highest known for Lyalpha emitters (LAEs). Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the center and exponential discs in the outskirts with disc scale lengths alpha in the range ~0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ~1/8-1/5 solar, low stellar mass ~(0.2 - 4)e9 Msun, high star formation rates SFR~14-36 Msun/yr, and high SFR densities Sigma~2-35 Msun/yr/kpc^2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al. (2016), reveal that a selection for compact star-forming galaxies showing high [OIII]5007/[OII]3727 ratios appears to pick up very efficiently sources with escaping Lyman continuum radiation: all five of our selected galaxies are LyC leakers.
The Lyman-alpha (Lya) emission line is the primary observational signature of star-forming galaxies at the highest redshifts, and has enabled the compilation of large samples of galaxies with which to study cosmic evolution. The resonant nature of the line, however, means that Lya photons scatter in the neutral interstellar medium of their host galaxies, and their sensitivity to absorption by interstellar dust may therefore be enhanced greatly. This implies that the Lya luminosity may be significantly reduced, or even completely suppressed. Hitherto, no unbiased empirical test of the escaping fraction (f_esc) of Lya photons has been performed at high redshifts. Here we report that the average fesc from star-forming galaxies at redshift z = 2.2 is just 5 per cent by performing a blind narrowband survey in Lya and Ha. This implies that numerous conclusions based on Lya-selected samples will require upwards revision by an order of magnitude and we provide a benchmark for this revision. We demonstrate that almost 90 per cent of star-forming galaxies emit insufficient Lya to be detected by standard selection criteria. Both samples show an anti-correlation of fesc with dust content, and we show that Lya- and Ha-selection recovers populations that differ substantially in dust content and fesc.
One of the key questions in observational cosmology is the identification of the sources responsible for ionisation of the Universe after the cosmic Dark Ages, when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionise the Universe by redshift z~6, but low-mass star-forming galaxies are thought to be responsible for the bulk of the ionising radiation. Since direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. However, starburst galaxies at low redshifts are generally opaque to their ionising radiation. This radiation with small escape fractions of 1-3% is directly detected only in three low-redshift galaxies. Here we present far-ultraviolet observations of a nearby low-mass star-forming galaxy, J0925+1403, selected for its compactness and high excitation. The galaxy is leaking ionising radiation, with an escape fraction of ~8%. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material, which is about 40 times more massive than the stellar mass of the galaxy.
We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galaxies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
We report the discovery of J0121+0025, an extremely luminous and young star-forming galaxy (M_UV = -24.11, log[L_Lya / erg s^-1] = 43.8) at z = 3.244 showing copious Lyman continuum (LyC) leakage (f_esc,abs ~ 40%). High signal-to-noise ratio rest-frame UV spectroscopy with the Gran Telescopio Canarias reveals a high significance (7.9 sigma) emission below the Lyman limit (< 912A), with a flux density level f_900A = 0.78 +/- 0.10 uJy, and strong P-Cygni in wind lines of OVI 1033A, NV 1240A and CIV 1550A that are indicative of a young age of the starburst (<10 Myr). The spectrum is rich in stellar photospheric features, for which a significant contribution of an AGN at these wavelengths is ruled out. Low-ionization ISM absorption lines are also detected, but are weak (EW0 ~ 1A) and show large residual intensities, suggesting a clumpy geometry of the gas with a non-unity covering fraction or a highly ionized ISM. The contribution of a foreground and AGN contamination to the LyC signal is unlikely. Deep optical to Spitzer/IRAC 4.5um imaging show that the spectral energy distribution of J0121+0025 is dominated by the emission of the young starburst, with log(M*/Msun) = 9.9 +/- 0.1 and SFR = 981 +/- 232 Msun yr^-1. J0121+0025 is the most powerful LyC emitter known among the star-forming galaxy population. The discovery of such luminous and young starburst leaking LyC radiation suggests that a significant fraction of LyC photons can escape in sources with a wide range of UV luminosities and are not restricted to the faintest ones as previously thought. These findings might shed further light on the role of luminous starbursts to the cosmic reionization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا