Do you want to publish a course? Click here

Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies

112   0   0.0 ( 0 )
 Added by Yuri Izotov I.
 Publication date 2016
  fields Physics
and research's language is English
 Authors Y. I. Izotov




Ask ChatGPT about the research

Following our first detection reported in Izotov et al. (2016), we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). These galaxies, at redshifts of z~0.3, are characterized by high emission-line flux ratios [OIII]5007/[OII]3727 > 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ~6%-13%, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Lyalpha emission lines are detected in the spectra of all four galaxies, compatible with predictions for Lyman continuum leakers. We find escape fractions of Lyalpha, fesc(Lyalpha) ~20%-40%, among the highest known for Lyalpha emitters (LAEs). Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the center and exponential discs in the outskirts with disc scale lengths alpha in the range ~0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ~1/8-1/5 solar, low stellar mass ~(0.2 - 4)e9 Msun, high star formation rates SFR~14-36 Msun/yr, and high SFR densities Sigma~2-35 Msun/yr/kpc^2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al. (2016), reveal that a selection for compact star-forming galaxies showing high [OIII]5007/[OII]3727 ratios appears to pick up very efficiently sources with escaping Lyman continuum radiation: all five of our selected galaxies are LyC leakers.



rate research

Read More

We compare the relations among various integrated characteristics of ~25,000 low-redshift (z<1.0) compact star-forming galaxies (CSFGs) from Data Release 16 (DR16) of the Sloan Digital Sky Survey (SDSS) and of high-redshift (z>1.5) star-forming galaxies (SFGs) with respect to oxygen abundances, stellar masses M*, far-UV absolute magnitudes M(FUV), star-formation rates SFR and specific star-formation rates sSFR, Lyman-continuum photon production efficiencies (xi_ion), UV continuum slopes beta, [OIII]5007/[OII]3727 and [NeIII]3868/[OII]3727 ratios, and emission-line equivalent widths EW([OII]3727), EW([OIII]5007), and EW(Halpha). We find that the relations for low-z CSFGs with high equivalent widths of the Hbeta emission line, EW(Hbeta)>100A, and high-z SFGs are very similar, implying close physical properties in these two categories of galaxies. Thus, CSFGs are likely excellent proxies for the SFGs in the high-z Universe. They also extend to galaxies with lower stellar masses, down to ~10^6 Msun, and to absolute FUV magnitudes as faint as -14 mag. Thanks to their proximity, CSFGs can be studied in much greater detail than distant SFGs. Therefore, the relations between the integrated characteristics of the large sample of CSFGs studied here can prove very useful for our understanding of high-z dwarf galaxies in future observations with large ground-based and space telescopes.
We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z=0.3690, is characterized by a high emission-line flux ratio O32=[OIII]5007/[OII]3727=11.5. The escape fraction of the LyC radiation fesc(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Lya emission line is detected in the spectrum of J1154+2443 with a separation between the peaks Vsep of 199 km/s, one of the lowest known for Lya-emitting galaxies, implying a high fesc(Lya). Comparing the extinction-corrected Lya/Hb flux ratio with the case B value we find fesc(Lya) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O32 with increasing fesc(LyC). We also find a tight anticorrelation between fesc(LyC) and Vsep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length alpha=1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+logO/H=7.65+/-0.01, the lowest stellar mass M*=10^8.20 Msun, a similar star formation rate SFR=18.9 Msun/yr and a high specific SFR of 1.2x10^-7 yr^-1.
We present the observations of Lyman continuum (LyC) emission in the afterglow spectra of GRB 191004B at $z=3.5055$, together with those of the other two previously known LyC-emitting long gamma-ray bursts (LGRB) (GRB 050908 at $z=3.3467$, and GRB 060607A at $z=3.0749$), to determine their LyC escape fraction and compare their properties. From the afterglow spectrum of GRB 191004B we determine a neutral hydrogen column density at the LGRB redshift of $log(N_{rm HI}/cm^{-2})= 17.2 pm 0.15$, and negligible extinction ($A_{rm V}=0.03 pm 0.02$ mag). The only metal absorption lines detected are CIV and SiIV. In contrast to GRB 050908 and GRB 060607A, the host galaxy of GRB 191004B displays significant Ly$alpha$ emission. From its Ly$alpha$ emission and the non-detection of Balmer emission lines we constrain its star-formation rate (SFR) to $1 leq$ SFR $leq 4.7$ M$_{odot} yr^{-1}$. We fit the Ly$alpha$ emission with a shell model and find parameters values consistent with the observed ones. The absolute LyC escape fractions we find for GRB 191004B, GRB 050908 and GRB 060607A are of $0.35^{+0.10}_{-0.11}$, $0.08^{+0.05}_{-0.04}$ and $0.20^{+0.05}_{-0.05}$, respectively. We compare the LyC escape fraction of LGRBs to the values of other LyC emitters found from the literature, showing that LGRB afterglows can be powerful tools to study LyC escape for faint high-redshift star-forming galaxies. Indeed we could push LyC leakage studies to much higher absolute magnitudes. The host galaxies of the three LGRB presented here have all $M_{rm 1600} > -19.5$ mag, with the GRB 060607A host at $M_{rm 1600} > -16$ mag. LGRB hosts may therefore be particularly suitable for exploring the ionizing escape fraction in galaxies that are too faint or distant for conventional techniques. Furthermore the time investment is very small compared to galaxy studies. [Abridged]
We present Lyman continuum (LyC) radiation escape fraction $f_{rm{esc}}$ measurements for 183 spectroscopically confirmed star-forming galaxies in the redshift range $3.11 < z < 3.53$ in the textit{Chandra} Deep Field South. We use ground-based imaging to measure $f_{rm{esc}}$, and use ground- and space-based photometry to derive galaxy physical properties using spectral energy distribution (SED) fitting. We additionally derive [O,textsc{iii}],+,H$beta$ equivalent widths (that fall in the observed $K$ band) by including nebular emission in the SED fitting. After removing foreground contaminants, we report the discovery of 11 new candidate LyC leakers, with absolute LyC escape fractions, $f_{rm{esc}}$ in the range $0.07-0.52$. Most galaxies in our sample ($approx94%$) do not show any LyC leakage, and we place $1sigma$ upper limits of $f_{rm{esc}} < 0.07$ through weighted averaging, where the Lyman-break selected galaxies have $f_{rm{esc}} < 0.07$ and `blindly discovered galaxies with no prior photometric selection have $f_{rm{esc}} < 0.10$. We additionally measure $f_{rm{esc}} < 0.09$ for extreme emission line galaxies in our sample with rest-frame [O,textsc{iii}],+,H$beta$ equivalent widths $>300$,AA. For the candidate LyC leakers, we do not find a strong dependence of $f_{rm{esc}}$ on their stellar masses and/or specific star-formation rates, and no correlation between $f_{rm{esc}}$ and EW$_0$([O,textsc{iii}],+,H$beta$). We suggest that this lack of correlations may be explained by viewing angle and/or non-coincident timescales of starburst activity and periods of high $f_{rm{esc}}$. Alternatively, escaping radiation may predominantly occur in highly localised star-forming regions, thereby obscuring any global trends with galaxy properties. Both hypotheses have important consequences for models of reionisation.
We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of nine low-mass star-forming galaxies at redshifts, z, in the range 0.3179-0.4524, with stellar masses Mstar < 10^8 M and veruny high specific star-formation rates sSFR~150-630 Gyr^{-1}, aiming to study the dependence of leaking Lyman continuum (LyC) emission on stellar mass and some other characteristics of the galaxy. We detect LyC emission in four out of nine galaxies with escape fractions, fesc(LyC), in the range of 11-35 per cent, and establish upper limits for fesc(LyC) in the remaining five galaxies. We observe a narrow Ly-alpha emission line with two peaks in seven galaxies and likely more complex Ly-alpha profiles in the two remaining galaxies. The velocity separation between the peaks Vsep varies in the range from ~229 km/s to ~512 km/s. Our additional data on low-mass galaxies confirm and strengthen the tight anti-correlation between fesc(LyC) and Vsep found for previous low-redshift galaxy samples with higher stellar masses. Vsep remains the best indirect indicator of LyC leakage. It is better than O32 on which fesc(LyC) depends weakly, with a large scatter. Finally, contrary to expectations, we find no increase of fesc(LyC) with decreasing galaxy stellar mass Mstar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا