Do you want to publish a course? Click here

Resumming perturbative series in the presence of monopole bubbling effects

114   0   0.0 ( 0 )
 Added by Masazumi Honda
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Monopole bubbling effect is screening of magnetic charges of singular Dirac monopoles by regular t Hooft-Polyakov monopoles. We study properties of weak coupling perturbative series in the presence of monopole bubbling effects as well as instantons. For this purpose, we analyze supersymmetric t Hooft loop in four dimensional $mathcal{N}=2$ supersymmetric gauge theories with Lagrangians and non-positive beta functions. We show that the perturbative series of the t Hooft loop is Borel summable along positive real axis for fixed instanton numbers and screened magnetic charges. It turns out that the exact result of the t Hooft loop is the same as the sum of the Borel resummations over instanton numbers and effective magnetic charges. We also obtain the same result for supersymmetric dyonic loops.



rate research

Read More

We develop an approach to the study of Coulomb branch operators in 3D $mathcal{N}=4$ gauge theories and the associated quantization structure of their Coulomb branches. This structure is encoded in a one-dimensional TQFT subsector of the full 3D theory, which we describe by combining several techniques and ideas. The answer takes the form of an associative and noncommutative star product algebra on the Coulomb branch. For `good and `ugly theories (according to the Gaiotto-Witten classification), we also exhibit a trace map on this algebra, which allows for the computation of correlation functions and, in particular, guarantees that the star product satisfies a truncation condition. This work extends previous work on abelian theories to the non-abelian case by quantifying the monopole bubbling that describes screening of GNO boundary conditions. In our approach, monopole bubbling is determined from the algebraic consistency of the OPE. This also yields a physical proof of the Bullimore-Dimofte-Gaiotto abelianization description of the Coulomb branch.
74 - Masazumi Honda 2016
Continuing the work arXiv:1603.06207, we study perturbative series in general 3d $mathcal{N}=2$ supersymmetric Chern-Simons matter theory with $U(1)_R$ symmetry, which is given by a power series expansion of inverse Chern-Simons levels. We find that the perturbative series are usually non-Borel summable along positive real axis for various observables. Alternatively we prove that the perturbative series are always Borel summable along negative (positive) imaginary axis for positive (negative) Chern-Simons levels. It turns out that the Borel resummations along this direction are the same as exact results and therefore correct ways of resumming the perturbative series.
70 - M. Asadi 2021
We investigate the time-dependent perturbations of strongly coupled $mathcal{N} = 4$ SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS$_5times$S$^5$. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point $theta = 1/2$. Moreover, we establish a relation between symmetry enhancement of the underlying theory and vanishing the only third order hydrodynamic transport coefficient $theta_1$, which appears in the shear dispersion relation of a conformal theory on a flat background.
Berrys phase, which is associated with the slow cyclic motion with a finite period, looks like a Dirac monopole when seen from far away but smoothly changes to a dipole near the level crossing point in the parameter space in an exactly solvable model. This topology change of Berrys phase is visualized as a result of lensing effect; the monopole supposed to be located at the level crossing point appears at the displaced point when the variables of the model deviate from the precisely adiabatic movement. The effective magnetic field generated by Berrys phase is determined by a simple geometrical consideration of the magnetic flux coming from the displaced Dirac monopole.
Entanglement entropy in a field theory, with a holographic dual, may be viewed as a quantity which encodes the diffeomorphism invariant bulk gravity dynamics. This, in particular, indicates that the bulk Einstein equations would imply some constraints for the boundary entanglement entropy. In this paper we focus on the change in entanglement entropy, for small but arbitrary fluctuations about a given state, and analyze the constraints imposed on it by the perturbative Einstein equations, linearized about the corresponding bulk state. Specifically, we consider linear fluctuations about BTZ black hole in 3 dimension, pure AdS and AdS Schwarzschild black holes in 4 dimensions and obtain a diffeomorphism invariant reformulation of linearized Einstein equation in terms of holographic entanglement entropy. We will also show that entanglement entropy for boosted subsystems provides the information about all the components of the metric with a time index.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا