No Arabic abstract
Continuing the work arXiv:1603.06207, we study perturbative series in general 3d $mathcal{N}=2$ supersymmetric Chern-Simons matter theory with $U(1)_R$ symmetry, which is given by a power series expansion of inverse Chern-Simons levels. We find that the perturbative series are usually non-Borel summable along positive real axis for various observables. Alternatively we prove that the perturbative series are always Borel summable along negative (positive) imaginary axis for positive (negative) Chern-Simons levels. It turns out that the Borel resummations along this direction are the same as exact results and therefore correct ways of resumming the perturbative series.
We study a certain class of supersymmetric (SUSY) observables in 3d $mathcal{N}=2$ SUSY Chern-Simons (CS) matter theories and investigate how their exact results are related to the perturbative series with respect to coupling constants given by inverse CS levels. We show that the observables have nontrivial resurgent structures by expressing the exact results as a full transseries consisting of perturbative and non-perturbative parts. As real mass parameters are varied, we encounter Stokes phenomena at an infinite number of points, where the perturbative series becomes non-Borel-summable due to singularities on the positive real axis of the Borel plane. We also investigate the Stokes phenomena when the phase of the coupling constant is varied. For these cases, we find that the Borel ambiguities in the perturbative sector are canceled by those in nonperturbative sectors and end up with an unambiguous result which agrees with the exact result even on the Stokes lines. We also decompose the Coulomb branch localization formula, which is an integral representation for the exact results, into Lefschetz thimble contributions and study how they are related to the resurgent transseries. We interpret the non-perturbative effects appearing in the transseries as contributions of complexified SUSY solutions which formally satisfy the SUSY conditions but are not on the original path integral contour.
We investigate phases of 3d ${cal N}=2$ Chern-Simons-matter theories, extending to three dimensions the celebrated correspondence between 2d gauged Wess-Zumino-Witten (GWZW) models and non-linear sigma models (NLSMs) with geometric targets. We find that although the correspondence in 3d and 2d are closely related by circle compactification, an important subtlety arises in this process, changing the phase structure of the 3d theory. Namely, the effective theory obtained from the circle compactification of a phase of a 3d ${cal N}=2$ gauge theory is, in general, different from the phase of the 3d ${cal N}=2$ theory on ${mathbb R}^2times S^{1}$, which means taking phases of a 3d gauge theory does not necessarily commute with compactification. We compute the Witten index of each effective theory to check this observation. Furthermore, when the matter fields have the same non-minimal charges, the 3d ${cal N}=2$ Chern-Simons-matter theory with a proper Chern-Simons level will decompose into several identical 2d gauged linear sigma models (GLSMs) for the same target upon reduction to 2d. To illustrate this phenomenon, we investigate how vacua of the 3d gauge theory for a weighted projective space $Wmathbb{P}_{[l,cdots,l]}$ move on the field space when we change the radius of $S^{1}$.
In supersymmetric (SUSY) field theory, there exist configurations which formally satisfy SUSY conditions but are not on original path integral contour. We refer to such configurations as complexified supersymmetric solutions (CSS). In this paper we discuss that CSS provide important information on large order behavior of weak coupling perturbative series in SUSY field theories. We conjecture that CSS with a bosonic (fermionic) free parameter give poles (zeroes) of Borel transformation of perturbative series whose locations are uniquely determined by actions of the solutions. We demonstrate this for various SUSY observables in 3d $mathcal{N}=2$ SUSY Chern-Simons matter theories on sphere. First we construct infinite number of CSS in general 3d $mathcal{N}=2$ SUSY theory with Lagrangian where adjoint scalar in vector multiplet takes a complex value and matter fields are nontrivial. Then we compare their actions with Borel transformations of perturbative expansions by inverse Chern-Simons levels for the observables and see agreement with our conjecture. It turns out that the CSS explain all the Borel singularities for this case.
In $mathcal N geq 2$ superconformal Chern-Simons-matter theories we construct the infinite family of Bogomolnyi-Prasad-Sommerfield (BPS) Wilson loops featured by constant parametric couplings to scalar and fermion matter, including both line Wilson loops in Minkowski spacetime and circle Wilson loops in Euclidean space. We find that the connection of the most general BPS Wilson loop cannot be decomposed in terms of double-node connections. Moreover, if the quiver contains triangles, it cannot be interpreted as a supermatrix inside a superalgebra. However, for particular choices of the parameters it reduces to the well-known connections of 1/6 BPS Wilson loops in Aharony-Bergman-Jafferis-Maldacena (ABJM) theory and 1/4 BPS Wilson loops in $mathcal N = 4$ orbifold ABJM theory. In the particular case of $mathcal N = 2$ orbifold ABJM theory we identify the gravity duals of a subset of operators. We investigate the cohomological equivalence of fermionic and bosonic BPS Wilson loops at quantum level by studying their expectation values, and find strong evidence that the cohomological equivalence holds quantum mechanically, at framing one. Finally, we discuss a stronger formulation of the cohomological equivalence, which implies non-trivial identities for correlation functions of composite operators in the defect CFT defined on the Wilson contour and allows to make novel predictions on the corresponding unknown integrals that call for a confirmation.
This is a compact review of recent results on supersymmetric Wilson loops in ABJ(M) and related theories. It aims to be a quick introduction to the state of the art in the field and a discussion of open problems. It is divided into short chapters devoted to different questions and techniques. Some new results, perspectives and speculations are also presented. We hope this might serve as a baseline for further studies of this topic.