Do you want to publish a course? Click here

Nanoscale vector AC magnetometry with a single nitrogen-vacancy center in diamond

144   0   0.0 ( 0 )
 Added by Guoqing Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detection of AC magnetic fields at the nanoscale is critical in applications ranging from fundamental physics to materials science. Isolated quantum spin defects, such as the nitrogen-vacancy center in diamond, can achieve the desired spatial resolution with high sensitivity. Still, vector AC magnetometry currently relies on using different orientations of an ensemble of sensors, with degraded spatial resolution, and a protocol based on a single NV is lacking. Here we propose and experimentally demonstrate a protocol that exploits a single NV to reconstruct the vectorial components of an AC magnetic field by tuning a continuous driving to distinct resonance conditions. We map the spatial distribution of an AC field generated by a copper wire on the surface of the diamond. The proposed protocol combines high sensitivity, broad dynamic range, and sensitivity to both coherent and stochastic signals, with broad applications in condensed matter physics, such as probing spin fluctuations.

rate research

Read More

The electrical conductivity of a material can feature subtle, nontrivial, and spatially-varying signatures with critical insight into the materials underlying physics. Here we demonstrate a conductivity imaging technique based on the atom-sized nitrogen-vacancy (NV) defect in diamond that offers local, quantitative, and noninvasive conductivity imaging with nanoscale spatial resolution. We monitor the spin relaxation rate of a single NV center in a scanning probe geometry to quantitatively image the magnetic fluctuations produced by thermal electron motion in nanopatterned metallic conductors. We achieve 40-nm scale spatial resolution of the conductivity and realize a 25-fold increase in imaging speed by implementing spin-to-charge conversion readout of a shallow NV center. NV-based conductivity imaging can probe condensed-matter systems in a new regime, and as a model example, we project readily achievable imaging of nanoscale phase separation in complex oxides.
Individual, luminescent point defects in solids so called color centers are atomic-sized quantum systems enabling sensing and imaging with nanoscale spatial resolution. In this overview, we introduce nanoscale sensing based on individual nitrogen vacancy (NV) centers in diamond. We discuss two central challenges of the field: First, the creation of highly-coherent, shallow NV centers less than 10 nm below the surface of single-crystal diamond. Second, the fabrication of tip-like photonic nanostructures that enable efficient fluorescence collection and can be used for scanning probe imaging based on color centers with nanoscale resolution.
Diamond nitrogen-vacancy (NV) center magnetometry has recently received considerable interest from researchers in the fields of applied physics and sensors. The purpose of this review is to analyze the principle, sensitivity, technical development potential, and application prospect of the diamond NV center magnetometry. This review briefly introduces the physical characteristics of NV centers, summarizes basic principles of the NV center magnetometer, analyzes the theoretical sensitivity, and discusses the impact of technical noise on the NV center magnetometer. Furthermore, the most critical technologies that affect the performance of the NV center magnetometer are described: diamond sample preparation, microwave manipulation, fluorescence collection, and laser excitation. The theoretical and technical crucial problems, potential solutions and research technical route are discussed. In addition, this review discusses the influence of technical noise under the conventional technical conditions and the actual sensitivity which is determined by the theoretical sensitivity and the technical noise. It is envisaged that the sensitivity that can be achieved through an optimized design is in the order of 10 fT/Hz^1/2. Finally, the roadmap of applications of the diamond NV center magnetometer are presented.
We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$sqrt{text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical access is needed.
We designed a nanoscale light extractor (NLE) for efficient outcoupling and beaming of broadband light emitted by shallow, negatively charged nitrogen-vacancy (NV) centers in bulk diamond. The NLE consists of a patterned silicon layer on diamond and requires no etching of the diamond surface. Our design process is based on adjoint optimization using broadband time-domain simulations and yields structures that are inherently robust to positioning and fabrication errors. Our NLE functions like a transmission antenna for the NV center, enhancing the optical power extracted from an NV center positioned 10 nm below the diamond surface by a factor of more than 35, and beaming the light into a +/-30{deg} cone in the far field. This approach to light extraction can be readily adapted to other solid-state color centers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا