The head-on collision of ion-acoustic solitary waves in a collisionless plasma with cold ions and Boltzmann electrons is studied. It is shown that solitary waves of sufficiently large amplitudes do not retain their identity after a collision. Their amplitudes decrease and their forms change. Dependences of amplitudes of the potential and densities of ions and electrons after a head-on collision of identical solitary waves on their initial amplitude are presented.
Head-on collisions of ion-acoustic solitary waves in a collisionless plasma consisting of cold ions and Boltzmann electrons are studied using the particle-in-cell simulation. It is shown that the collision of solitary waves can occur under different scenarios. Solitary waves preserve or do not preserve their amplitudes and shapes after a collision, depending on their initial amplitudes. The range of initial amplitudes, at which a solitary wave preserves its identity after collisions, is established. The use of a diagram of initial amplitudes of colliding solitary waves to consider possible collision scenarios is discussed. The characteristic regions in the diagram of the initial amplitudes corresponding to different collision scenarios are determined, and a classification of head-on collisions of ion-acoustic solitary waves in a plasma is proposed.
A Korteweg-de Vries (KdV) equation including the effect of Landau damping is derived to study the propagation of weakly nonlinear and weakly dispersive ion acoustic waves in a collisionless unmagnetized plasma consisting of warm adiabatic ions and two different species of electrons at different temperatures. The hotter energetic electron species follows the nonthermal velocity distribution of Cairns et al. [Geophys. Res. Lett. 22, 2709 (1995)] whereas the cooler electron species obeys the Boltzmann distribution. It is found that the coefficient of the nonlinear term of this KdV like evolution equation vanishes along different family of curves in different parameter planes. In this context, a modified KdV (MKdV) equation including the effect of Landau damping effectively describes the nonlinear behaviour of ion acoustic waves. It has also been observed that the coefficients of the nonlinear terms of the KdV and MKdV like evolution equations including the effect of Landau damping, are simultaneously equal to zero along a family of curves in the parameter plane. In this situation, we have derived a further modified KdV (FMKdV) equation including the effect of Landau damping to describe the nonlinear behaviour of ion acoustic waves. In fact, different modified KdV like evolution equations including the effect of Landau damping have been derived to describe the nonlinear behaviour of ion acoustic waves in different region of parameter space. The method of Ott & Sudan [Phys. Fluids 12, 2388 (1969)] has been applied to obtain the solitary wave solution of the evolution equation having the nonlinear term $(phi^{(1)})^{r}frac{partial phi^{(1)}}{partial xi}$, where $phi^{(1)}$ is the first order perturbed electrostatic potential and $r =1,2,3$. We have found that the amplitude of the solitary wave solution decreases with time for all $r =1,2,3$.
Employing the Sagdeev pseudo-potential technique the ion acoustic solitary structures have been investigated in an unmagnetized collisionless plasma consisting of adiabatic warm ions, nonthermal electrons and isothermal positrons. The qualitatively different compositional parameter spaces clearly indicate the existence domains of solitons and double layers with respect to any parameter of the present plasma system. The present system supports the negative potential double layer which always restricts the occurrence of negative potential solitons. The system also supports positive potential double layers when the ratio of the average thermal velocity of positrons to that of electrons is less than a critical value. However, there exists a parameter regime for which the positive potential double layer is unable to restrict the occurrence of positive potential solitary waves and in this region of the parameter space, there exist positive potential solitary waves after the formation of a positive potential double layer. Consequently, positive potential supersolitons have been observed. The nonthermality of electrons plays an important role in the formation of positive potential double layers as well as positive potential supersolitons. The formation of positive potential supersoliton is analysed with the help of phase portraits of the dynamical system corresponding to the ion acoustic solitary structures of the present plasma system.
We have used the Sagdeev pseudo-potential technique to investigate the arbitrary amplitude ion acoustic solitons, double layers and supersolitons in a collisionless magnetized plasma consisting of adiabatic warm ions, isothermal cold electrons and nonthermal hot electrons immersed in an external uniform static magnetic field. We have used the phase portraits of the dynamical system describing the nonlinear behaviour of ion acoustic waves to confirm the existence of different solitary structures. We have also investigated the transition of different solitary structures: soliton (before the formation of double layer) $rightarrow$ double layer $rightarrow$ supersoliton $rightarrow$ soliton (soliton after the formation of double layer) by considering the variation of $theta$ only, where $theta$ is the angle between the direction of the external uniform static magnetic field and the direction of propagation of the wave.
The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.