Do you want to publish a course? Click here

Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma

138   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.



rate research

Read More

An experimental investigation of the propagation characteristics of shock waves in an inhomogeneous dusty plasma is carried out in the Dusty Plasma Experimental (DPEx) device. A homogeneous dusty plasma, made up of poly-dispersive kaolin particles, is initially formed in a DC glow discharge Argon plasma by maintaining a dynamic equilibrium of the pumping speed and the gas feeding rate. Later, an equilibrium density inhomogeneity in the dust fluid is created by introducing an imbalance in the original dynamic equilibrium. Non-linear wave structures are then excited in this inhomogeneous dusty plasma by a sudden compression in the dust fluid. These structures are identified as shock waves and their amplitude and width profiles are measured spatially. The amplitude of a shock structure is seen to increase whereas the width broadens as it propagates down a decreasing dust density profile. A modified-KdV-Burger equation is derived and used to provide a theoretical explanation of the results including the power law scaling of the changes in the amplitude and width as a function of the background density.
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1 < Gamma << Gamma_c) where Gamma is the Coulomb coupling parameter and Gamma_c is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.
Low frequency dust acoustic waves (DAW) were excited in a laboratory argon dusty plasma by modulating the discharge voltage with a low frequency AC signal. Metallic graphite particles were used as dust grains and a digital FFT technique was used to obtain dispersion characteristics. The experimental dispersion relation shows the reduction of phase velocity and a regime where $partial omega/partial k < 0$. A comparison is made with existing theoretical model.
115 - Yu. V. Medvedev 2017
The head-on collision of ion-acoustic solitary waves in a collisionless plasma with cold ions and Boltzmann electrons is studied. It is shown that solitary waves of sufficiently large amplitudes do not retain their identity after a collision. Their amplitudes decrease and their forms change. Dependences of amplitudes of the potential and densities of ions and electrons after a head-on collision of identical solitary waves on their initial amplitude are presented.
The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $partialomega/partial k < 0$ are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا