Do you want to publish a course? Click here

Image restoration of solar spectra

102   0   0.0 ( 0 )
 Added by Michiel van Noort
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

When recording spectra from the ground, atmospheric turbulence causes degradation of the spatial resolution. We present a data reduction method that restores the spatial resolution of the spectra to their undegraded state. By assuming that the point spread function (PSF) estimated from a strictly synchronized, broadband slit-jaw camera is the same as the PSF that spatially degraded the spectra, we can quantify what linear combination of undegraded spectra is present in each degraded data point. The set of equations obtained in this way is found to be generally well-conditioned and sufficiently diagonal to be solved using an iterative linear solver. The resulting solution has regained a spatial resolution comparable to that of the restored slit-jaw images.



rate research

Read More

119 - J. K. Zhao , G. Zhao , Y. Q. Chen 2011
Based on high resolution and high signal-to-noise ratio (S/N) spectra analysis of 90 solar type stars, we have established several new metallicity calibrations in Teff range [5600, 6500] K based on red spectra with the wavelength range of 560-880 nm. The new metallicity calibrations are applied to determine the metallicity of solar analogs selected from SDSS spectra. There is a good consistent result with the adopted value presented in SDSS-DR7 and a small scatter of 0.26 dex for stars with S/N > 50 is obtained. This study provides a new reliable way to derive the metallicity for solar-like stars with low resolution spectra. In particular, our calibrations are useful for finding metal-rich stars, which are missing in SSPP.
Images acquired with a telescope are blurred and corrupted by noise. The blurring is usually modeled by a convolution with the Point Spread Function and the noise by Additive Gaussian Noise. Recovering the observed image is an ill-posed inverse problem. Sparse deconvolution is well known to be an efficient deconvolution technique, leading to optimized pixel Mean Square Errors, but without any guarantee that the shapes of objects (e.g. galaxy images) contained in the data will be preserved. In this paper, we introduce a new shape constraint and exhibit its properties. By combining it with a standard sparse regularization in the wavelet domain, we introduce the Shape COnstraint REstoration algorithm (SCORE), which performs a standard sparse deconvolution, while preserving galaxy shapes. We show through numerical experiments that this new approach leads to a reduction of galaxy ellipticity measurement errors by at least 44%.
In this paper we illustrate the technique used by the New Vacuum Solar Telescope to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observation involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, a large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude could reach up to 1.3 due to the earths atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with the scanning spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Ha line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sample and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. Two-dimensional physical quantity, such as the line-of-sight velocities in multi-layer of the solar atmosphere, is also inferred demonstrating the effect of this technique.
Machine learning and many of its applications are considered hard to approach due to their complexity and lack of transparency. One mission of human-centric machine learning is to improve algorithm transparency and user satisfaction while ensuring an acceptable task accuracy. In this work, we present an interactive image restoration framework, which exploits both image prior and human painting knowledge in an iterative manner such that they can boost on each other. Additionally, in this system users can repeatedly get feedback of their interactions from the restoration progress. This informs the users about their impact on the restoration results, which leads to better sense of control, which can lead to greater trust and approachability. The positive results of both objective and subjective evaluation indicate that, our interactive approach positively contributes to the approachability of restoration algorithms in terms of algorithm performance and user experience.
Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASAs first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAPs electron Parker Solar Probe Analyzer (SPAN-E) instruments are a pair of top-hat electrostatic analyzers on PSP that are capable of measuring the electron distribution function in the solar wind from 2 eV to 30 keV. For the first time, in-situ measurements of thermal electrons provided by SPAN-E will help reveal the heating and acceleration mechanisms driving the evolution of the solar wind at the points of acceleration and heating, closer than ever before to the Sun. This paper details the design of the SPAN-E sensors and their operation, data formats, and measurement caveats from Parker Solar Probes first two close encounters with the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا