Do you want to publish a course? Click here

Composing Method for the Two-dimensional Scanning Spectra Observed by the New Vacuum Solar Telescope

134   0   0.0 ( 0 )
 Added by Yunfang Cai
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we illustrate the technique used by the New Vacuum Solar Telescope to increase the spatial resolution of two-dimensional (2D) solar spectroscopy observation involving two dimensions of space and one of wavelength. Without an image stabilizer at the NVST, a large scale wobble motion is present during the spatial scanning, whose instantaneous amplitude could reach up to 1.3 due to the earths atmosphere and the precision of the telescope guiding system, and seriously decreases the spatial resolution of 2D spatial maps composed with the scanning spectra. We make the following effort to resolve this problem: the imaging system (e.g., the TiO-band) is used to record and detect the displacement vectors of solar image motion during the raster scan, in both the slit and scanning directions. The spectral data (e.g., the Ha line) which are originally obtained in time sequence are corrected and re-arranged in space according to those displacement vectors. Raster scans are carried out in several active regions with different seeing conditions (two rasters are illustrated in this paper). Given a certain spatial sample and temporal resolution, the spatial resolution of the composed 2D map could be close to that of the slit-jaw image. The resulting quality after correction is quantitatively evaluated with two methods. Two-dimensional physical quantity, such as the line-of-sight velocities in multi-layer of the solar atmosphere, is also inferred demonstrating the effect of this technique.

rate research

Read More

We present a precise and complete procedure for processing spectral data observed by the 1-meter New Vacuum Solar Telescope (NVST). The procedure is suitable for both the sit-and-stare and raster-scan spectra. In this work, the geometric distortions of the spectra are firstly corrected for subsequent processes. Then, considering the temporal changes and the remnants of spectral lines in the flat-field, the original flat-field matrix is split into four independent components for ensuring a high precision flat-fielding correction, consisting of the continuum gradient matrix, slit non-uniform matrix, CCD dust matrix, and interference fringe matrix. Subsequently, the spectral line drifts and intensity fluctuations of the science data are further corrected. After precise reduction with this procedure, the measuring accuracies of the Doppler velocities for different spectral lines and of the oscillation curves of the chromosphere and photosphere are measured. The results show that the highest measuring accuracy of the Doppler velocity is within 100 ms-1, which indicates that the characteristics of the photosphere and chromosphere can be studied co-spatially and co-temporally with the reduced spectra of NVST.
444 - Zhong Liu , Jun Xu , Bo-Zhong Gu 2014
The New Vacuum Solar Telescope (NVST) is a 1 meter vacuum solar telescope that aims to observe the fine structures on the Sun. The main tasks of NVST are high resolution imaging and spectral observations, including the measurements of solar magnetic field. NVST is the primary ground-based facility of Chinese solar community in this solar cycle. It is located by the Fuxian Lake of southwest China, where the seeing is good enough to perform high resolution observations. In this paper, we first introduce the general conditions of Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of solar photosphere and chromosphere are also shown.
Using high resolution off-band ha data from the New Solar Telescope and Morlet wavelet analysis technique, we analyzed transverse motions of type II spicules observed near the North Pole of the Sun. Our new findings are that i) some of the observed type II spicules display kink or an inverse Y features, suggesting that their origin may be due to magnetic reconnection, and ii) type II spicules tend to display coherent transverse motions/oscillations. Also, the wavelet analysis detected significant presence of high frequency oscillations in type II spicules, ranging from 30 to 180 s with the the average period of 90 s. We conclude that at least some of type II spicules and their coherent transverse motions may be caused by reconnection between large scale fields rooted in the intergranular lanes and and small-scale emerging dipoles, a process that is know to generate high frequency kink mode MHD waves propagating along the magnetic field lines.
Six high-resolution TiO-band image sequences from the New Vacuum Solar Telescope (NVST) are used to investigate the properties of intergranular bright points (igBPs). We detect the igBPs using a Laplacian and morphological dilation algorithm (LMD) and track them using a three-dimensional segmentation algorithm automatically, and then investigate the morphologic, photometric and dynamic properties of igBPs, in terms of equivalent diameter, the intensity contrast, lifetime, horizontal velocity, diffusion index, motion range and motion type. The statistical results confirm the previous studies based on G-band or TiO-band igBPs from the other telescopes. It illustrates that the TiO data from the NVST have a stable and reliable quality, which are suitable for studying the igBPs. In addition, our method is feasible to detect and track the igBPs in the TiO data from the NVST. With the aid of the vector magnetograms obtained from the Solar Dynamics Observatory /Helioseismic and Magnetic Imager, the properties of igBPs are found to be influenced by their embedded magnetic environments strongly. The area coverage, the size and the intensity contrast values of igBPs are generally larger in the regions with higher magnetic flux. However, the dynamics of igBPs, including the horizontal velocity, the diffusion index, the ratio of motion range and the index of motion type are generally larger in the regions with lower magnetic flux. It suggests that the absence of strong magnetic fields in the medium makes it possible for the igBPs to look smaller and weaker, diffuse faster, move faster and further in a straighter path.
101 - Michiel van Noort 2017
When recording spectra from the ground, atmospheric turbulence causes degradation of the spatial resolution. We present a data reduction method that restores the spatial resolution of the spectra to their undegraded state. By assuming that the point spread function (PSF) estimated from a strictly synchronized, broadband slit-jaw camera is the same as the PSF that spatially degraded the spectra, we can quantify what linear combination of undegraded spectra is present in each degraded data point. The set of equations obtained in this way is found to be generally well-conditioned and sufficiently diagonal to be solved using an iterative linear solver. The resulting solution has regained a spatial resolution comparable to that of the restored slit-jaw images.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا