No Arabic abstract
Machine learning and many of its applications are considered hard to approach due to their complexity and lack of transparency. One mission of human-centric machine learning is to improve algorithm transparency and user satisfaction while ensuring an acceptable task accuracy. In this work, we present an interactive image restoration framework, which exploits both image prior and human painting knowledge in an iterative manner such that they can boost on each other. Additionally, in this system users can repeatedly get feedback of their interactions from the restoration progress. This informs the users about their impact on the restoration results, which leads to better sense of control, which can lead to greater trust and approachability. The positive results of both objective and subjective evaluation indicate that, our interactive approach positively contributes to the approachability of restoration algorithms in terms of algorithm performance and user experience.
Modulating image restoration level aims to generate a restored image by altering a factor that represents the restoration strength. Previous works mainly focused on optimizing the mean squared reconstruction error, which brings high reconstruction accuracy but lacks finer texture details. This paper presents a Controllable Unet Generative Adversarial Network (CUGAN) to generate high-frequency textures in the modulation tasks. CUGAN consists of two modules -- base networks and condition networks. The base networks comprise a generator and a discriminator. In the generator, we realize the interactive control of restoration levels by tuning the weights of different features from different scales in the Unet architecture. Moreover, we adaptively modulate the intermediate features in the discriminator according to the severity of degradations. The condition networks accept the condition vector (encoded degradation information) as input, then generate modulation parameters for both the generator and the discriminator. During testing, users can control the output effects by tweaking the condition vector. We also provide a smooth transition between GAN and MSE effects by a simple transition method. Extensive experiments demonstrate that the proposed CUGAN achieves excellent performance on image restoration modulation tasks.
Clinical research on smart healthcare has an increasing demand for intelligent and clinic-oriented medical image computing algorithms and platforms that support various applications. To this end, we have developed SenseCare research platform for smart healthcare, which is designed to boost translational research on intelligent diagnosis and treatment planning in various clinical scenarios. To facilitate clinical research with Artificial Intelligence (AI), SenseCare provides a range of AI toolkits for different tasks, including image segmentation, registration, lesion and landmark detection from various image modalities ranging from radiology to pathology. In addition, SenseCare is clinic-oriented and supports a wide range of clinical applications such as diagnosis and surgical planning for lung cancer, pelvic tumor, coronary artery disease, etc. SenseCare provides several appealing functions and features such as advanced 3D visualization, concurrent and efficient web-based access, fast data synchronization and high data security, multi-center deployment, support for collaborative research, etc. In this paper, we will present an overview of SenseCare as an efficient platform providing comprehensive toolkits and high extensibility for intelligent image analysis and clinical research in different application scenarios.
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution. In recent years, solutions that are based on deep Convolutional Neural Networks (CNNs) have shown great promise. Yet, most of these techniques, which train CNNs using external data, are restricted to the observation models that have been used in the training phase. A recent alternative that does not have this drawback relies on learning the target image using internal learning. One such prominent example is the Deep Image Prior (DIP) technique that trains a network directly on the input image with a least-squares loss. In this paper, we propose a new image restoration framework that is based on minimizing a loss function that includes a projected-version of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN. We demonstrate two ways to use our framework. In the first one, where no explicit prior is used, we show that the proposed approach outperforms other internal learning methods, such as DIP. In the second one, we show that our GSURE-based loss leads to improved performance when used within a plug-and-play priors scheme.
Images acquired with a telescope are blurred and corrupted by noise. The blurring is usually modeled by a convolution with the Point Spread Function and the noise by Additive Gaussian Noise. Recovering the observed image is an ill-posed inverse problem. Sparse deconvolution is well known to be an efficient deconvolution technique, leading to optimized pixel Mean Square Errors, but without any guarantee that the shapes of objects (e.g. galaxy images) contained in the data will be preserved. In this paper, we introduce a new shape constraint and exhibit its properties. By combining it with a standard sparse regularization in the wavelet domain, we introduce the Shape COnstraint REstoration algorithm (SCORE), which performs a standard sparse deconvolution, while preserving galaxy shapes. We show through numerical experiments that this new approach leads to a reduction of galaxy ellipticity measurement errors by at least 44%.
Hybrid-distorted image restoration (HD-IR) is dedicated to restore real distorted image that is degraded by multiple distortions. Existing HD-IR approaches usually ignore the inherent interference among hybrid distortions which compromises the restoration performance. To decompose such interference, we introduce the concept of Disentangled Feature Learning to achieve the feature-level divide-and-conquer of hybrid distortions. Specifically, we propose the feature disentanglement module (FDM) to distribute feature representations of different distortions into different channels by revising gain-control-based normalization. We also propose a feature aggregation module (FAM) with channel-wise attention to adaptively filter out the distortion representations and aggregate useful content information from different channels for the construction of raw image. The effectiveness of the proposed scheme is verified by visualizing the correlation matrix of features and channel responses of different distortions. Extensive experimental results also prove superior performance of our approach compared with the latest HD-IR schemes.