Do you want to publish a course? Click here

Self-view Grounding Given a Narrated 360{deg} Video

218   0   0.0 ( 0 )
 Added by Shih-Han Chou
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Narrated 360{deg} videos are typically provided in many touring scenarios to mimic real-world experience. However, previous work has shown that smart assistance (i.e., providing visual guidance) can significantly help users to follow the Normal Field of View (NFoV) corresponding to the narrative. In this project, we aim at automatically grounding the NFoVs of a 360{deg} video given subtitles of the narrative (referred to as NFoV-grounding). We propose a novel Visual Grounding Model (VGM) to implicitly and efficiently predict the NFoVs given the video content and subtitles. Specifically, at each frame, we efficiently encode the panorama into feature map of candidate NFoVs using a Convolutional Neural Network (CNN) and the subtitles to the same hidden space using an RNN with Gated Recurrent Units (GRU). Then, we apply soft-attention on candidate NFoVs to trigger sentence decoder aiming to minimize the reconstruct loss between the generated and given sentence. Finally, we obtain the NFoV as the candidate NFoV with the maximum attention without any human supervision. To train VGM more robustly, we also generate a reverse sentence conditioning on one minus the soft-attention such that the attention focuses on candidate NFoVs less relevant to the given sentence. The negative log reconstruction loss of the reverse sentence (referred to as irrelevant loss) is jointly minimized to encourage the reverse sentence to be different from the given sentence. To evaluate our method, we collect the first narrated 360{deg} videos dataset and achieve state-of-the-art NFoV-grounding performance.



rate research

Read More

Narrated instructional videos often show and describe manipulations of similar objects, e.g., repairing a particular model of a car or laptop. In this work we aim to reconstruct such objects and to localize associated narrations in 3D. Contrary to the standard scenario of instance-level 3D reconstruction, where identical objects or scenes are present in all views, objects in different instructional videos may have large appearance variations given varying conditions a
The proliferation of fake news and filter bubbles makes it increasingly difficult to form an unbiased, balanced opinion towards a topic. To ameliorate this, we propose 360{deg} Stance Detection, a tool that aggregates news with multiple perspectives on a topic. It presents them on a spectrum ranging from support to opposition, enabling the user to base their opinion on multiple pieces of diverse evidence.
Many objects in the real world undergo dramatic variations in visual appearance. For example, a tomato may be red or green, sliced or chopped, fresh or fried, liquid or solid. Training a single detector to accurately recognize tomatoes in all these different states is challenging. On the other hand, contextual cues (e.g., the presence of a knife, a cutting board, a strainer or a pan) are often strongly indicative of how the object appears in the scene. Recognizing such contextual cues is useful not only to improve the accuracy of object detection or to determine the state of the object, but also to understand its functional properties and to infer ongoing or upcoming human-object interactions. A fully-supervised approach to recognizing object states and their contexts in the real-world is unfortunately marred by the long-tailed, open-ended distribution of the data, which would effectively require massive amounts of annotations to capture the appearance of objects in all their different forms. Instead of relying on manually-labeled data for this task, we propose a new framework for learning Contextualized OBject Embeddings (COBE) from automatically-transcribed narrations of instructional videos. We leverage the semantic and compositional structure of language by training a visual detector to predict a contextualized word embedding of the object and its associated narration. This enables the learning of an object representation where concepts relate according to a semantic language metric. Our experiments show that our detector learns to predict a rich variety of contextual object information, and that it is highly effective in the settings of few-shot and zero-shot learning.
74 - Yi Zhang , Lu Zhang , Jing Zhang 2021
Salient human detection (SHD) in dynamic 360{deg} immersive videos is of great importance for various applications such as robotics, inter-human and human-object interaction in augmented reality. However, 360{deg} video SHD has been seldom discussed in the computer vision community due to a lack of datasets with large-scale omnidirectional videos and rich annotations. To this end, we propose SHD360, the first 360{deg} video SHD dataset which contains various real-life daily scenes. Our SHD360 provides six-level hierarchical annotations for 6,268 key frames uniformly sampled from 37,403 omnidirectional video frames at 4K resolution. Specifically, each collected frame is labeled with a super-class, a sub-class, associated attributes (e.g., geometrical distortion), bounding boxes and per-pixel object-/instance-level masks. As a result, our SHD360 contains totally 16,238 salient human instances with manually annotated pixel-wise ground truth. Since so far there is no method proposed for 360{deg} image/video SHD, we systematically benchmark 11 representative state-of-the-art salient object detection (SOD) approaches on our SHD360, and explore key issues derived from extensive experimenting results. We hope our proposed dataset and benchmark could serve as a good starting point for advancing human-centric researches towards 360{deg} panoramic data. Our dataset and benchmark is publicly available at https://github.com/PanoAsh/SHD360.
Recently, there has been a growing interest in wearable sensors which provides new research perspectives for 360 {deg} video analysis. However, the lack of 360 {deg} datasets in literature hinders the research in this field. To bridge this gap, in this paper we propose a novel Egocentric (first-person) 360{deg} Kinetic human activity video dataset (EgoK360). The EgoK360 dataset contains annotations of human activity with different sub-actions, e.g., activity Ping-Pong with four sub-actions which are pickup-ball, hit, bounce-ball and serve. To the best of our knowledge, EgoK360 is the first dataset in the domain of first-person activity recognition with a 360{deg} environmental setup, which will facilitate the egocentric 360 {deg} video understanding. We provide experimental results and comprehensive analysis of variants of the two-stream network for 360 egocentric activity recognition. The EgoK360 dataset can be downloaded from https://egok360.github.io/.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا