No Arabic abstract
We present an experimental study of nanowire transmons at zero and applied in-plane magnetic field. With Josephson non-linearities provided by the nanowires, our qubits operate at higher magnetic fields than standard transmons. Nanowire transmons exhibit coherence up to 70 mT, where the induced superconducting gap in the nanowire closes. We demonstrate that on-chip charge noise coupling to the Josephson energy plays a dominant role in the qubit dephasing. This takes the form of strongly-coupled two-level systems switching on 100 ms timescales and a more weakly coupled background producing $1/f$ noise. Several observations, including the field dependence of qubit energy relaxation and dephasing, are not fully understood, inviting further experimental investigation and theory. Using nanowires with a thinner superconducting shell will enable operation of these circuits up to 0.5 T, a regime relevant for topological quantum computation.
Exploring the properties and applications of topological quantum states is essential to better understand topological matter. Here, we theoretically study a quasi-one-dimensional topological atom array. In the low-energy regime, the atom array is equivalent to a topological superatom. Driving the superatom in a cavity, we study the interaction between light and topological quantum states. We find that the edge states exhibit topology-protected quantum coherence, which can be characterized from the photon transmission. This quantum coherence helps us to find a superradiance-subradiance transition, and we also study its finite-size scaling behavior. The superradiance-subradiance transition also exists in symmetry-breaking systems. More importantly, it is shown that the quantum coherence of the subradiant edge state is robust to random noises, allowing the superatom to work as a topologically protected quantum memory. We suggest a relevant experiment with three-dimensional circuit QED. Our study may have applications in quantum computation and quantum optics based on topological edge states.
A merged-element transmon (MET) device, based on Si fins, is proposed and the steps to form such a FinMET are demonstrated. This new application of fin technology capitalizes on the anisotropic etch of Si(111) relative to Si(110) to define atomically flat, high aspect ratio Si tunnel barriers with epitaxial superconductor contacts on the parallel side-wall surfaces. This process circumvents the challenges associated with the growth of low-loss insulating barriers on lattice matched superconductors. By implementing low-loss, intrinsic float-zone Si as the barrier material rather than commonly used, lossy Al2O3, the FinMET is expected to overcome problems with standard transmons by (1) reducing dielectric losses; (2) minimizing the formation of two-level system spectral features; (3) exhibiting greater control over barrier thickness and qubit frequency spread, especially when combined with commercial fin fabrication and atomic-layer digital etching; (4) reducing the footprint by four orders of magnitude; and (5) allowing scalable fabrication. Here, fabrication of Si fins on Si(110) substrates with shadow-deposited Al electrodes is demonstrated. The formation of FinMET devices is expected to allow tunnel junction patterning with optical lithography. This facilitates uniform fabrication on Si wafers based on existing infrastructure for fin-based devices while simultaneously avoiding lossy amorphous dielectrics for tunnel barriers.
Physical implementations of large-scale quantum processors based on solid-state platforms benefit from realizations of quantum bits positioned in regular arrays. Self-assembled quantum dots are well-established as promising candidates for quantum optics and quantum information processing, but they are randomly positioned. Site-controlled quantum dots, on the other hand, are grown in pre-defined locations, but have not yet been sufficiently developed to be used as a platform for quantum information processing. In this letter we demonstrate all-optical ultrafast complete coherent control of a qubit formed by the single-spin/trion states of a charged site-controlled nanowire quantum dot. Our results show that site-controlled quantum dots in nanowires are promising hosts of charged-exciton qubits, and that these qubits can be cleanly manipulated in the same fashion as has been demonstrated in randomly-positioned quantum dot samples. Our findings suggest that many of the related excitonic qubit experiments that have been performed over the past 15 years may work well in the more scalable site-controlled systems, making them very promising for the realization of quantum hardware.
We theoretically study the levitation of a single magnetic domain nanosphere in an external static magnetic field. We show that apart from the stability provided by the mechanical rotation of the nanomagnet (as in the classical Levitron), the quantum spin origin of its magnetization provides two additional mechanisms to stably levitate the system. Despite of the Earnshaw theorem, such stable phases are present even in the absence of mechanical rotation. For large magnetic fields, the Larmor precession of the quantum magnetic moment stabilizes the system in full analogy with magnetic trapping of a neutral atom. For low magnetic fields, the magnetic anisotropy stabilizes the system via the Einstein-de Haas effect. These results are obtained with a linear stability analysis of a single magnetic domain rigid nanosphere with uniaxial anisotropy in a Ioffe-Pritchard magnetic field.
The Second Law of Thermodynamics states that the entropy of a closed system is non-decreasing. Discussing the Second Law in the quantum world poses new challenges and provides new opportunities, involving fundamental quantum-information-theoretic questions and novel quantum-engineered devices. In quantum mechanics, systems with an evolution described by a so-called unital quantum channel evolve with a non-decreasing entropy. Here, we seek the opposite, a system described by a non-unital and, furthermore, energy-conserving channel that describes a system whose entropy decreases with time. We propose a setup involving a mesoscopic four-lead scatterer augmented by a micro-environment in the form of a spin that realizes this goal. Within this non-unital and energy-conserving quantum channel, the micro-environment acts with two non-commuting operations on the system in an autonomous way. We find, that the process corresponds to a partial exchange or swap between the system and environment quantum states, with the systems entropy decreasing if the environments state is more pure. This entropy-decreasing process is naturally expressed through the action of a quantum Maxwell demon and we propose a quantum-thermodynamic engine with four qubits that extracts work from a single heat reservoir when provided with a reservoir of pure qubits. The special feature of this engine, which derives from the energy-conservation in the non-unital quantum channel, is its separation into two cycles, a working cycle and an entropy cycle, allowing to run this engine with no local waste heat.