Do you want to publish a course? Click here

First Extended Catalogue of Galactic Bubbles InfraRed Fluxes from WISE and Herschel Surveys

50   0   0.0 ( 0 )
 Added by Filomena Bufano
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we present the first extended catalogue of far-infrared fluxes of Galactic bubbles. Fluxes were estimated for 1814 bubbles, defined here as the `golden sample, and were selected from the Milky Way Project First Data Release (Simpson et al.) The golden sample was comprised of bubbles identified within the Wide-field Infrared Survey Explorer (WISE) dataset (using 12- and 22-$mu$m images) and Herschel data (using 70-, 160-, 250-, 350- and 500-$mu$m wavelength images). Flux estimation was achieved initially via classical aperture photometry and then by an alternative image analysis algorithm that used active contours. The accuracy of the two methods was tested by comparing the estimated fluxes for a sample of bubbles, made up of 126 H II regions and 43 planetary nebulae, which were identified by Anderson et al. The results of this paper demonstrate that a good agreement between the two was found. This is by far the largest and most homogeneous catalogue of infrared fluxes measured for Galactic bubbles and it is a step towards the fully automated analysis of astronomical datasets.



rate research

Read More

Galactic infrared (IR) bubbles, which have shell-like structures in the mid-IR wavelengths, are known to contain massive stars near their centers. IR bubbles in inner Galactic regions ($|$l$|leq$ 65$^{circ}$, $|$b$|leq$ 1$^{circ}$) have so far been studied well to understand the massive star formation mechanisms. In this study, we expand the research area to the whole Galactic plane (0$^{circ}leq$ l $<$360$^{circ}$, $|$b$|leq$ 5$^{circ}$), using the AKARI all-sky survey data. We limit our study on large bubbles with angular radii of $>1$ to reliably identify and characterize them. For the 247 IR bubbles in total, we derived the radii and the covering fractions of the shells, based on the method developed in citet{Hattori2016}. We also created their spectral energy distributions, using the AKARI and Herschel photometric data, and decomposed them with a dust model, to obtain the total IR luminosity and the luminosity of each dust component, i.e., polycyclic aromatic hydrocarbons (PAHs), warm dust and cold dust. As a result, we find that there are systematic differences in the IR properties of the bubbles between inner and outer Galactic regions. The total IR luminosities are lower in outer Galactic regions, while there is no systematic difference in the range of the shell radii between inner and outer Galactic regions. More IR bubbles tend to be observed as broken bubbles rather than closed ones and the fractional luminosities of the PAH emission are significantly higher in outer Galactic regions. We discuss the implications of these results for the massive stars and the interstellar environments associated with the Galactic IR bubbles.
Galactic infrared (IR) bubbles, which can be seen as shell-like structures at mid-IR wavelengths, are known to possess massive stars within their shell boundaries. In our previous study, Hanaoka et al. (2019) expanded the research area to the whole Galactic plane ($0^{circ} leq l leq 360^{circ}$, $|b| leq 5^{circ}$) and studied systematic differences in the shell morphology and the IR luminosity of the IR bubbles between inner and outer Galactic regions. In this study, utilizing high spatial-resolution data of AKARI and WISE in the mid-IR and Herschel in the far-IR, we investigate the spatial distributions of dust components around each IR bubble to discuss the relation between the star-formation activity and the dust properties of the IR bubbles. For the 247 IR bubbles studied in Hanaoka et al. (2019), 165 IR bubbles are investigated in this study, which have the Herschel data ($|b| leq 1^{circ}$) and known distances. We created their spectral energy distributions on a pixel-by-pixel basis around each IR bubble, and decomposed them with a dust model consisting of polycyclic aromatic hydrocarbons (PAHs), hot dust, warm dust and cold dust. As a result, we find that the offsets of dust heating sources from the shell centers in inner Galactic regions are systematically larger than those in outer Galactic regions. Many of the broken bubbles in inner Galactic regions show large angles between the offset and the broken shell directions from the center. Moreover, the spatial variations of the PAH intensity and cold dust emissivity around the IR bubbles in inner Galactic regions are larger than those in outer Galactic regions. We discuss these results in light of the interstellar environments and the formation mechanism of the massive stars associated with the IR bubbles.
We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 ${mu}{rm m}$ images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140 and 160 ${mu}{rm m}$, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm and cold dust components by decomposing 6-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of the total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morphological types. In particular, they follow a power-law relation with an index of $sim$3 between the total IR luminosity and radius, as expected from the conventional picture of the Str$rm{ddot{o}}$mgren sphere. The exceptions are large broken bubbles; they indicate higher total IR luminosities, lower fractional luminosities of the PAH emission, and dust heating sources located nearer to the shells. We discuss the implications of those differences for a massive star-formation scenario.
We discuss a new IRAS Faint Source Catalog galaxy redshift catalogue (RIFSCz) which incorporates data from Galex, SDSS, 2MASS, WISE, Akari and Planck. Akari fluxes are consistent with photometry from other far infrared and submillimetre missions provided an aperture correction is applied. Results from the Hermes-SWIRE survey in Lockman are also discussed briefly, and the strong contrast between the galaxy populations selected at 60 and 500 mu is summarized.
Near-IR data of Classical Novae contain useful information about the ejected gas mass and the thermal emission by dust formed during eruption, and provide independent methods to classify the objects according to the colour of their progenitors, and the fading rate and features seen after eruption. The VISTA Variables in the Via Lactea survey (VVV) is a near-IR ESO Public Survey mapping the MW bulge and southern plane. Data taken during 2010-2011 covered the entire area in the JHKs bands plus some epochs in Ks-band of the ongoing VVV variability campaign. We used the novae list provided by VSX/AAVSO catalogue to search for all objects within the VVV area. We used the VVV data to create a near-IR catalogue of the known Galactic novae in the 562 sq.deg. area covered by VVV. The VVV near-IR catalogue of novae contains JHKs photometry of 93 objects completed as of December 2012. We also checked in the ongoing VVV variability campaign for the light-curves of novae that erupted in the last years. VVV images can also be used to discover and study novae by searching for the expanding shell. Since objects are seen at different distances and reddening levels, the colour-magnitude and colour-colour diagrams show the novae spread in magnitude as well as in colour. Dereddened colours and reddening-free indices were used with caution and cannot be a good approach in all cases since the distance and spectral features prevent more conclusive results for some extreme objects. Light-curves for some recent novae are presented. Thanks to its high spatial resolution in the near-IR, and large Ks-range, the VVV survey can be a major contributor for the search and study of novae in the most crowded and high-extinction regions of the Milky Way. The VVV survey area contains ~35 of all known novae in the Galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا