Do you want to publish a course? Click here

A systematic study of Galactic infrared bubbles along the Galactic plane with AKARI and Herschel

175   0   0.0 ( 0 )
 Added by Misaki Hanaoka
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galactic infrared (IR) bubbles, which have shell-like structures in the mid-IR wavelengths, are known to contain massive stars near their centers. IR bubbles in inner Galactic regions ($|$l$|leq$ 65$^{circ}$, $|$b$|leq$ 1$^{circ}$) have so far been studied well to understand the massive star formation mechanisms. In this study, we expand the research area to the whole Galactic plane (0$^{circ}leq$ l $<$360$^{circ}$, $|$b$|leq$ 5$^{circ}$), using the AKARI all-sky survey data. We limit our study on large bubbles with angular radii of $>1$ to reliably identify and characterize them. For the 247 IR bubbles in total, we derived the radii and the covering fractions of the shells, based on the method developed in citet{Hattori2016}. We also created their spectral energy distributions, using the AKARI and Herschel photometric data, and decomposed them with a dust model, to obtain the total IR luminosity and the luminosity of each dust component, i.e., polycyclic aromatic hydrocarbons (PAHs), warm dust and cold dust. As a result, we find that there are systematic differences in the IR properties of the bubbles between inner and outer Galactic regions. The total IR luminosities are lower in outer Galactic regions, while there is no systematic difference in the range of the shell radii between inner and outer Galactic regions. More IR bubbles tend to be observed as broken bubbles rather than closed ones and the fractional luminosities of the PAH emission are significantly higher in outer Galactic regions. We discuss the implications of these results for the massive stars and the interstellar environments associated with the Galactic IR bubbles.



rate research

Read More

Galactic infrared (IR) bubbles, which can be seen as shell-like structures at mid-IR wavelengths, are known to possess massive stars within their shell boundaries. In our previous study, Hanaoka et al. (2019) expanded the research area to the whole Galactic plane ($0^{circ} leq l leq 360^{circ}$, $|b| leq 5^{circ}$) and studied systematic differences in the shell morphology and the IR luminosity of the IR bubbles between inner and outer Galactic regions. In this study, utilizing high spatial-resolution data of AKARI and WISE in the mid-IR and Herschel in the far-IR, we investigate the spatial distributions of dust components around each IR bubble to discuss the relation between the star-formation activity and the dust properties of the IR bubbles. For the 247 IR bubbles studied in Hanaoka et al. (2019), 165 IR bubbles are investigated in this study, which have the Herschel data ($|b| leq 1^{circ}$) and known distances. We created their spectral energy distributions on a pixel-by-pixel basis around each IR bubble, and decomposed them with a dust model consisting of polycyclic aromatic hydrocarbons (PAHs), hot dust, warm dust and cold dust. As a result, we find that the offsets of dust heating sources from the shell centers in inner Galactic regions are systematically larger than those in outer Galactic regions. Many of the broken bubbles in inner Galactic regions show large angles between the offset and the broken shell directions from the center. Moreover, the spatial variations of the PAH intensity and cold dust emissivity around the IR bubbles in inner Galactic regions are larger than those in outer Galactic regions. We discuss these results in light of the interstellar environments and the formation mechanism of the massive stars associated with the IR bubbles.
49 - F. Bufano , P. Leto , D. Carey 2017
In this paper, we present the first extended catalogue of far-infrared fluxes of Galactic bubbles. Fluxes were estimated for 1814 bubbles, defined here as the `golden sample, and were selected from the Milky Way Project First Data Release (Simpson et al.) The golden sample was comprised of bubbles identified within the Wide-field Infrared Survey Explorer (WISE) dataset (using 12- and 22-$mu$m images) and Herschel data (using 70-, 160-, 250-, 350- and 500-$mu$m wavelength images). Flux estimation was achieved initially via classical aperture photometry and then by an alternative image analysis algorithm that used active contours. The accuracy of the two methods was tested by comparing the estimated fluxes for a sample of bubbles, made up of 126 H II regions and 43 planetary nebulae, which were identified by Anderson et al. The results of this paper demonstrate that a good agreement between the two was found. This is by far the largest and most homogeneous catalogue of infrared fluxes measured for Galactic bubbles and it is a step towards the fully automated analysis of astronomical datasets.
We have carried out a statistical study on the mid- and far-infrared (IR) properties of Galactic IR bubbles observed by Spitzer. Using the Spitzer 8 ${mu}{rm m}$ images, we estimated the radii and covering fractions of their shells, and categorized them into closed, broken and unclassified bubbles with our data analysis method. Then, using the AKARI all-sky images at wavelengths of 9, 18, 65, 90, 140 and 160 ${mu}{rm m}$, we obtained the spatial distributions and the luminosities of polycyclic aromatic hydrocarbon (PAH), warm and cold dust components by decomposing 6-band spectral energy distributions with model fitting. As a result, 180 sample bubbles show a wide range of the total IR luminosities corresponding to the bolometric luminosities of a single B-type star to many O-type stars. For all the bubbles, we investigated relationships between the radius, luminosities and luminosity ratios, and found that there are overall similarities in the IR properties among the bubbles regardless of their morphological types. In particular, they follow a power-law relation with an index of $sim$3 between the total IR luminosity and radius, as expected from the conventional picture of the Str$rm{ddot{o}}$mgren sphere. The exceptions are large broken bubbles; they indicate higher total IR luminosities, lower fractional luminosities of the PAH emission, and dust heating sources located nearer to the shells. We discuss the implications of those differences for a massive star-formation scenario.
171 - G. Baume , G. Carraro , Y. Momany 2009
We present optical ($UBVI_C$) observations of a rich and complex field in the Galactic plane towards $l sim 305^{circ}$ and $b sim 0^{circ}$. Our analysis reveals a significantly high interstellar absorbtion ($A_V sim 10$) and an abnormal extinction law in this line of sight. Availing a considerable number of color combinations, the photometric diagrams allow us to derive new estimates of the fundamental parameters of the two open clusters Danks~1 and Danks~2. Due to the derived abnormal reddening law in this line of sight, both clusters appear much closer (to the Sun) than previously thought. % Additionally, we present the optical colors and magnitudes of the WR~48a star and its main parameters were estimated. The properties of the two embedded clusters DBS2003~130 and 131, are also addressed. We identify a number of Young Stellar Objects which are probable members of these clusters. This new material is then used to revisit the spiral structure in this sector of the Galaxy showing evidence of populations associated with the inner Galaxy Scutum-Crux arm.
We discover two infrared objects that show deep absorption features of H2O, CO2, and CO ices in the AKARI/Infrared Camera (IRC) slit-less spectroscopic survey of the Galactic plane in 2.5--13 micron. Both objects are located neither in known star-forming regions nor in known dense clouds. For one of the objects, Object 1, we successfully extract a spectrum from 2.5 to 13 micron, which also shows several absorption features in 5--13 micron, including deep silicate absorption at 10 micron. For the other object, Object 2, only a spectrum from 3.1 to 5 micron is reliably extracted due to the presence of nearby overlapping objects and faint nebulosity. Both objects show warm (>100 K) CO gas absorption in addition to the ice absorption features, suggesting that they are embedded young stellar objects (YSOs). On the other hand, both objects have spectral energy distributions (SEDs) that peak at around 5 micron and decrease towards longer wavelengths. These characteristics of the SEDs and the presence of deep absorption features cannot easily be accounted for by standard YSO models. They may be explained as background stars behind dense clouds. We discuss possible nature of the objects and implications of the present discovery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا