No Arabic abstract
We study the temperature dependence of the drift velocity of single-domain ferromagnetic particles induced by the Magnus force in a dilute suspension. A set of stochastic equations describing the translational and rotational dynamics of particles is derived, and the particle drift velocity that depends on components of the average particle magnetization is introduced. The Fokker-Planck equation for the probability density of magnetization orientations is solved analytically in the limit of strong thermal fluctuations for both the planar rotor and general models. Using these solutions, we calculate the drift velocity and show that the out-of-plane fluctuations of magnetization, which are not accounted for in the planar rotor model, play an important role. In the general case of arbitrary fluctuations, we investigate the temperature dependence of the drift velocity by numerically simulating a set of effective stochastic differential equations for the magnetization dynamics.
A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the effect of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.
Deviations from linearity in the dependence of the logarithm of protein unfolding rates, $log k_u(f)$, as a function of mechanical force, $f$, measurable in single molecule experiments, can arise for many reasons. In particular, upward curvature in $log k_u(f)$ as a function of $f$ implies that the underlying energy landscape must be multidimensional with the possibility that unfolding ensues by parallel pathways. Here, simulations using the SOP-SC model of a wild type $beta$-sandwich protein and several mutants, with immunoglobulin folds, show upward curvature in the unfolding kinetics. There are substantial changes in the structures of the transition state ensembles as force is increased, signaling a switch in the unfolding pathways. Our results, when combined with previous theoretical and experimental studies, show that parallel unfolding of structurally unrelated single domain proteins can be determined from the dependence of $log k_u(f)$ as a function of force (or $log k_u[C]$ where $[C]$ is the denaturant concentration).
We formulate a theory on the dynamics of conduction electrons in the presence of moving magnetic textures in ferromagnetic materials. We show that the variation of local magnetization in both space and time gives rise to topological fields, which induce electromotive forces on the electrons. Universal results are obtained for the emf induced by both transverse and vortex domain walls traveling in a magnetic film strip, and their measurement may provide clear characterization on the motion of such walls.
Crystals melt when thermal excitations or the concentration of defects in the lattice is sufficiently high. Upon melting, the crystalline long-range order vanishes, turning the solid to a fluid. In contrast to this classical scenario of solid melting, here we demonstrate a counter-intuitive behavior of the occurrence of crystalline long-range order in an initially disordered matrix. This unusual solidification is demonstrated in a system of passive colloidal particles accommodating chemically active defects -- photocatalytic Janus particles. The observed crystallization occurs when the amount of active-defect-induced fluctuations (which is the measure of the effective temperature) reaches critical value. The driving mechanism behind this unusual behavior is purely internal and resembles a blast-induced solidification. Here the role of internal micro-blasts is played by the photochemical activity of defects residing in the colloidal matrix. The defect-induced solidification occurs under non-equilibrium conditions: the resulting solid exists as long as a constant supply of energy in the form of ion flow is provided by the catalytic photochemical reaction at the surface of active Janus particle defects. Our findings could be useful for understanding of the phase transitions of matter under extreme conditions far from thermodynamic equilibrium.
We report the precessional rotation of magnetically isotropic ferromagnetic nanoparticles in a viscous liquid that are subjected to a rotating magnetic field. In contrast to magnetically anisotropic nanoparticles, the rotation of which occurs due to coupling between the magnetic and lattice subsystems through magnetocrystalline anisotropy, the rotation of isotropic nanoparticles is induced only by magnetic dissipation processes. We propose a theory of this phenomenon based on a set of equations describing the deterministic magnetic and rotational dynamics of such particles. Neglecting inertial effects, we solve these equations analytically, find the magnetization and particle precessions in the steady state, determine the components of the particle angular velocity and analyze their dependence on the model parameters. The possibility of experimental observation of this phenomenon is also discussed.