Do you want to publish a course? Click here

Inverse Solidification Induced by Active Janus Particles

85   0   0.0 ( 0 )
 Added by Vyacheslav Misko
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Crystals melt when thermal excitations or the concentration of defects in the lattice is sufficiently high. Upon melting, the crystalline long-range order vanishes, turning the solid to a fluid. In contrast to this classical scenario of solid melting, here we demonstrate a counter-intuitive behavior of the occurrence of crystalline long-range order in an initially disordered matrix. This unusual solidification is demonstrated in a system of passive colloidal particles accommodating chemically active defects -- photocatalytic Janus particles. The observed crystallization occurs when the amount of active-defect-induced fluctuations (which is the measure of the effective temperature) reaches critical value. The driving mechanism behind this unusual behavior is purely internal and resembles a blast-induced solidification. Here the role of internal micro-blasts is played by the photochemical activity of defects residing in the colloidal matrix. The defect-induced solidification occurs under non-equilibrium conditions: the resulting solid exists as long as a constant supply of energy in the form of ion flow is provided by the catalytic photochemical reaction at the surface of active Janus particle defects. Our findings could be useful for understanding of the phase transitions of matter under extreme conditions far from thermodynamic equilibrium.

rate research

Read More

In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.
207 - Zhan Ma , Ran Ni 2021
Using computer simulations and dynamic mean-field theory, we demonstrate that fast enough rotation of circle active Brownian particles in two dimensions generates a dynamical clustering state interrupting the conventional motility induced phase separation (MIPS). Multiple clusters arise from the combination of the conventional MIPS cohesion, and the circulating current caused disintegration. The non-vanishing current in non-equilibrium steady states microscopically originates from the motility ``relieved by automatic rotation, which breaks the detailed balance at the continuum level. This mechanism sheds light on the understanding of dynamic clusters formation observed in a variety of active matter systems, and may help examine the generalization of effective thermodynamic concepts developed in the context of MIPS.
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, is especially prominent among cells persistently crawling within a spatially varying distribution of cell-sized obstacles. In this article we introduce a toy model of topotaxis based on active Brownian particles constrained to move in a lattice of obstacles, with space-dependent lattice spacing. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.
We investigate the phase behavior and kinetics of a monodisperse mixture of active (textit{i.e.}, self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase we further find active-passive segregation, with rafts of passive particles in a sea of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15 percent of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active corona which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.
Colloidal assembly at fluid interfaces has a great potential for the bottom-up fabrication of novel structured materials. However, challenges remain in realizing controllable and tunable assembly of particles into diverse structures. Herein, we report the capillary assembly of magnetic ellipsoidal Janus particles at a fluid-fluid interface. Depending on their tilt angle, i.e. the angle the particle main axis forms with the fluid interface, these particles deform the interface and generate capillary dipoles or hexapoles. Driven by capillary interactions, multiple particles thus assemble into chain-, hexagonal lattice- and ring-like structures, which can be actively controlled by applying an external magnetic field. We predict a field-strength phase diagram in which various structures are present as stable states. Owing to the diversity, controllability, and tunability of assembled structures, magnetic ellipsoidal Janus particles at fluid interfaces could therefore serve as versatile building blocks for novel materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا