No Arabic abstract
Key to resolving the scientific challenge of the glass transition is to understand the origin of the massive increase in viscosity of liquids cooled below their melting temperature (avoiding crystallisation). A number of competing and often mutually exclusive theoretical approaches have been advanced to describe this phenomenon. Some posit a bona fide thermodynamic phase to an ideal glass, an amorphous state with exceptionally low entropy. Other approaches are built around the concept of the glass transition as a primarily dynamic phenomenon. These fundamentally different interpretations give equally good descriptions of the data available, so it is hard to determine which -- if any -- is correct. Recently however this situation has begun to change. A consensus has emerged that one powerful means to resolve this longstanding question is to approach the putative thermodynamic transition sufficiently closely, and a number of techniques have emerged to meet this challenge. Here we review the results of some of these new techniques and discuss the implications for the existence -- or otherwise -- of the thermodynamic transition to an ideal glass.
We formulate a new theory for how caging constraints in glass-forming liquids at a surface or interface are modified and then spatially transferred, in a layer-by-layer bootstrapped manner, into the film interior in the context of the dynamic free energy concept of the Nonlinear Langevin Equation theory approach. The dynamic free energy at any mean location involves contributions from two adjacent layers where confining forces are not the same. At the most fundamental level of the theory, the caging component of the dynamic free energy varies essentially exponentially with distance from the interface, saturating deep enough into the film with a correlation length of modest size and weak sensitivity to thermodynamic state. This imparts a roughly exponential spatial variation of all the key features of the dynamic free energy required to compute gradients of dynamical quantities including the localization length, jump distance, cage barrier, collective elastic barrier and alpha relaxation time. The spatial gradients are entire of dynamical, not structural nor thermodynamic, origin. The theory is implemented for the hard sphere fluid and diverse interfaces which can be a vapor, a rough pinned particle solid, a vibrating pinned particle solid, or a smooth hard wall. Their basic description at the level of the spatially-heterogeneous dynamic free energy is identical, with the crucial difference arising from the first layer where dynamical constraints can be weakened, softened, or hardly changed depending on the specific interface. Numerical calculations establish the spatial dependence and fluid volume fraction sensitivity of the key dynamical property gradients for five different model interfaces. Comparison of the theoretical predictions for the dynamic localization length and glassy modulus with simulations and experiments for systems with a vapor interface reveals good agreement.
The glass transition remains unclarified in condensed matter physics. Investigating the mechanical properties of glass is challenging because any global deformation that may result in shear rejuvenation requires an astronomical relaxation time. Moreover, it is well known that a glass is heterogeneous and a global perturbation cannot explore local mechanical/transport properties. However, an investigation based on a local probe, i.e. microrheology, may overcome these problems. Here, we establish active microrheology of a bulk metallic glass: a probe particle driven into host medium glass. This is a technique amenable for experimental investigations. We show that upon cooling the microscopic friction exhibits a second-order phase transition; this sheds light on the origin of friction in heterogeneous materials. Further, we provide distinct evidence to demonstrate that a strong relationship exists between the microscopic dynamics of the probe particle and the macroscopic properties of the host medium glass. These findings establish active microrheology as a promising technique for investigating the local properties of bulk metallic glass.
It was recently shown that the real part of the frequency-dependent fluidity for several glass-forming liquids of different chemistry conforms to the prediction of the random barrier model (RBM) devised for ac electrical conduction in disordered solids [S. P. Bierwirth textit{et al.}, Phys. Rev. Lett. {bf 119}, 248001 (2017)]. Inspired by these results we introduce a crystallization-resistant modification of the Kob-Andersen binary Lennard-Jones mixture for which the results of extensive graphics-processing unit (GPU)-based molecular-dynamics simulations are presented. We find that the low-temperature mean-square displacement is fitted well by the RBM prediction, which involves no shape parameters. This finding highlights the challenge of explaining why a simple model based on hopping of non-interacting particles in a fixed random energy landscape can reproduce the complex and highly cooperative dynamics of glass-forming liquids.
We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulation. An external pressure restricts local motions of a single molecule within its cage and triggers the slowing down of cooperative mobility. While the ECNLE theory and simulation generally predict a monotonic increase of the glass transition temperature and dynamic fragility with pressure, the simulation indicates a decrease of fragility as pressure above 1000 bar. The structural relaxation time is found to be linearly coupled with the inverse diffusion constant. Remarkably, this coupling is independent of compression. Theoretical calculations agree quantitatively well with simulations and are also consistent with prior works.
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore significantly slows-down the molecular dynamics when increasing the pressure. We quantitatively determine the temperature and pressure dependence of the structural relaxation time. To validate our model, dielectric spectroscopy experiments for three rigid and non-polymeric supramolecules are carried out at ambient and elevated pressures. The numerical results quantitatively agree with experimental data.