We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulation. An external pressure restricts local motions of a single molecule within its cage and triggers the slowing down of cooperative mobility. While the ECNLE theory and simulation generally predict a monotonic increase of the glass transition temperature and dynamic fragility with pressure, the simulation indicates a decrease of fragility as pressure above 1000 bar. The structural relaxation time is found to be linearly coupled with the inverse diffusion constant. Remarkably, this coupling is independent of compression. Theoretical calculations agree quantitatively well with simulations and are also consistent with prior works.
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore significantly slows-down the molecular dynamics when increasing the pressure. We quantitatively determine the temperature and pressure dependence of the structural relaxation time. To validate our model, dielectric spectroscopy experiments for three rigid and non-polymeric supramolecules are carried out at ambient and elevated pressures. The numerical results quantitatively agree with experimental data.
It was recently shown that the real part of the frequency-dependent fluidity for several glass-forming liquids of different chemistry conforms to the prediction of the random barrier model (RBM) devised for ac electrical conduction in disordered solids [S. P. Bierwirth textit{et al.}, Phys. Rev. Lett. {bf 119}, 248001 (2017)]. Inspired by these results we introduce a crystallization-resistant modification of the Kob-Andersen binary Lennard-Jones mixture for which the results of extensive graphics-processing unit (GPU)-based molecular-dynamics simulations are presented. We find that the low-temperature mean-square displacement is fitted well by the RBM prediction, which involves no shape parameters. This finding highlights the challenge of explaining why a simple model based on hopping of non-interacting particles in a fixed random energy landscape can reproduce the complex and highly cooperative dynamics of glass-forming liquids.
The slow down of dynamics in glass forming liquids as the glass transition is approached has been characterised through the Adam-Gibbs relation, which relates relaxation time scales to the configurational entropy. The Adam-Gibbs relation cannot apply simultaneously to all relaxation times scales unless they are coupled, and exhibit closely related temperature dependences. The breakdown of the Stokes-Einstein relation presents an interesting situation to the contrary, and in analysing it, it has recently been shown that the Adam-Gibbs relation applies to diffusion coefficients rather than to viscosity or structural relaxation times related to the decay of density fluctuations. However, for multi-component liquids -- the typical cases considered in computer simulations, metallic glass formers, etc. -- such a statement raises the question of which diffusion coefficient is described by the Adam-Gibbs relation. All diffusion coefficients can be consistently described by the Adam-Gibbs relation if they bear a power law relationship with each other. Remarkably, we find that for a wide range of glass formers, and for a wide range of temperatures spanning the normal and the slow relaxation regimes, such a relationship holds. We briefly discuss possible rationalisations of the observed behaviour.
On approaching the glass transition, the microscopic kinetic unit spends increasing time rattling in the cage of the first neighbours whereas its average escape time, the structural relaxation time $tau_alpha$, increases from a few picoseconds up to thousands of seconds. A thorough study of the correlation between $tau_alpha$ and the rattling amplitude, expressed by the Debye-Waller factor (DW), was carried out. Molecular-dynamics (MD) simulations of both a model polymer system and a binary mixture were performed by varying the temperature, the density $rho$, the potential and the polymer length to consider the structural relaxation as well as both the rotational and the translation diffusion. The simulations evidence the scaling between the $tau_alpha$ and the Debye-Waller factor. An analytic model of the master curve is developed in terms of two characteristic length scales pertaining to the distance to be covered by the kinetic unit to reach a transition state. The model does not imply $tau_alpha$ divergences. The comparison with the experiments supports the numerical evidence over a range of relaxation times as wide as about eighteen orders of magnitude. A comparison with other scaling and correlation procedures is presented. The study suggests that the equilibrium and the moderately supercooled states of the glassformers possess key information on the huge slowing-down of their relaxation close to the glass transition. The latter, according to the present simulations, exhibits features consistent with the Lindemann melting criterion and the free-volume model.
One of the central problems of the liquid-glass transition is whether there is a structural signature that can qualitatively distinguish different dynamic behaviors at different degrees of supercooling. Here, we propose a novel structural characterization based on the spatial correlation of local density and we show the locally dense-packed structural environment has a direct link with the slow dynamics as well as dynamic heterogeneity in glass-formers. We find that particles with large local density relax slowly and the size of cluster formed by the dense-packed particles increases with decreasing the temperature. Moreover, the extracted static length scale shows clear correlation with the relaxation time at different degrees of supercooling. This suggests that the temporarily but continuously formed locally dense-packed structural environment may be the structural origin of slow dynamics and dynamic heterogeneity of the glass-forming liquids.
Anh D. Phan
,Kajetan Koperwas
,Marian Paluch
.
(2020)
.
"Coupling between structural relaxation and diffusion in glass-forming liquids under pressure variation"
.
Anh Phan Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا