No Arabic abstract
It was recently shown that the real part of the frequency-dependent fluidity for several glass-forming liquids of different chemistry conforms to the prediction of the random barrier model (RBM) devised for ac electrical conduction in disordered solids [S. P. Bierwirth textit{et al.}, Phys. Rev. Lett. {bf 119}, 248001 (2017)]. Inspired by these results we introduce a crystallization-resistant modification of the Kob-Andersen binary Lennard-Jones mixture for which the results of extensive graphics-processing unit (GPU)-based molecular-dynamics simulations are presented. We find that the low-temperature mean-square displacement is fitted well by the RBM prediction, which involves no shape parameters. This finding highlights the challenge of explaining why a simple model based on hopping of non-interacting particles in a fixed random energy landscape can reproduce the complex and highly cooperative dynamics of glass-forming liquids.
We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulation. An external pressure restricts local motions of a single molecule within its cage and triggers the slowing down of cooperative mobility. While the ECNLE theory and simulation generally predict a monotonic increase of the glass transition temperature and dynamic fragility with pressure, the simulation indicates a decrease of fragility as pressure above 1000 bar. The structural relaxation time is found to be linearly coupled with the inverse diffusion constant. Remarkably, this coupling is independent of compression. Theoretical calculations agree quantitatively well with simulations and are also consistent with prior works.
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore significantly slows-down the molecular dynamics when increasing the pressure. We quantitatively determine the temperature and pressure dependence of the structural relaxation time. To validate our model, dielectric spectroscopy experiments for three rigid and non-polymeric supramolecules are carried out at ambient and elevated pressures. The numerical results quantitatively agree with experimental data.
We analyze multiple new issues concerning activated relaxation in glassy hard sphere fluids and molecular and polymer liquids based on the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory. By invoking a high temperature reference state, a near universality of the apparent dynamic localization length scale is predicted for liquids of widely varying fragility, a result that is relevant to recent simulation studies and quasi-elastic neutron scattering measurements. In contrast, in the same format strongly non-universal behavior is found for the activation barrier that controls long time relaxation. Two measures of cooperativity in ECNLE theory are analyzed. A particle-level total displacement associated with the alpha relaxation event is found to be only of order 1-2 particle diameters and weakly increases with cooling. In contrast, an alternative cooperativity length is defined as the spatial scale required to recover the full barrier and bulk alpha time. This length scale grows strongly with cooling due to the emergence in the deeply supercooled regime of collective long range elastic fluctuations required to allow local hopping. It becomes very large as the laboratory Tg is approached, though is relatively modest at degrees of supercooling accessible with molecular dynamics simulation. The alpha time is found to be exponentially related to this cooperativity length over an enormous number of decades of relaxation time that span the lightly to deeply supercooled regimes. Moreover, the effective barrier height increases almost linearly with the growing cooperativity length scale. An alternative calculation of the collective elastic barrier based on a literal continuum mechanics approach is shown to result in very little change of the theoretical results for bulk properties, but leads to a much smaller and less temperature-sensitive cooperativity length scale.
We formulate a new theory for how caging constraints in glass-forming liquids at a surface or interface are modified and then spatially transferred, in a layer-by-layer bootstrapped manner, into the film interior in the context of the dynamic free energy concept of the Nonlinear Langevin Equation theory approach. The dynamic free energy at any mean location involves contributions from two adjacent layers where confining forces are not the same. At the most fundamental level of the theory, the caging component of the dynamic free energy varies essentially exponentially with distance from the interface, saturating deep enough into the film with a correlation length of modest size and weak sensitivity to thermodynamic state. This imparts a roughly exponential spatial variation of all the key features of the dynamic free energy required to compute gradients of dynamical quantities including the localization length, jump distance, cage barrier, collective elastic barrier and alpha relaxation time. The spatial gradients are entire of dynamical, not structural nor thermodynamic, origin. The theory is implemented for the hard sphere fluid and diverse interfaces which can be a vapor, a rough pinned particle solid, a vibrating pinned particle solid, or a smooth hard wall. Their basic description at the level of the spatially-heterogeneous dynamic free energy is identical, with the crucial difference arising from the first layer where dynamical constraints can be weakened, softened, or hardly changed depending on the specific interface. Numerical calculations establish the spatial dependence and fluid volume fraction sensitivity of the key dynamical property gradients for five different model interfaces. Comparison of the theoretical predictions for the dynamic localization length and glassy modulus with simulations and experiments for systems with a vapor interface reveals good agreement.
Motivated by the mean field prediction of a Gardner phase transition between a normal glass and a marginally stable glass, we investigate the off-equilibrium dynamics of three-dimensional polydisperse hard spheres, used as a model for colloidal or granular glasses. Deep inside the glass phase, we find that a sharp crossover pressure $P_{rm G}$ separates two distinct dynamical regimes. For pressure $P < P_{rm G}$, the glass behaves as a normal solid, displaying fast dynamics that quickly equilibrates within the glass free energy basin. For $P>P_{rm G}$, instead, the dynamics becomes strongly anomalous, displaying very large equilibration time scales, aging, and a constantly increasing dynamical susceptibility. The crossover at $P_{rm G}$ is strongly reminiscent of the one observed in three-dimensional spin-glasses in an external field, suggesting that the two systems could be in the same universality class, consistently with theoretical expectations.