Do you want to publish a course? Click here

HyperNetworks with statistical filtering for defending adversarial examples

64   0   0.0 ( 0 )
 Added by Zhun Sun
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Deep learning algorithms have been known to be vulnerable to adversarial perturbations in various tasks such as image classification. This problem was addressed by employing several defense methods for detection and rejection of particular types of attacks. However, training and manipulating networks according to particular defense schemes increases computational complexity of the learning algorithms. In this work, we propose a simple yet effective method to improve robustness of convolutional neural networks (CNNs) to adversarial attacks by using data dependent adaptive convolution kernels. To this end, we propose a new type of HyperNetwork in order to employ statistical properties of input data and features for computation of statistical adaptive maps. Then, we filter convolution weights of CNNs with the learned statistical maps to compute dynamic kernels. Thereby, weights and kernels are collectively optimized for learning of image classification models robust to adversarial attacks without employment of additional target detection and rejection algorithms. We empirically demonstrate that the proposed method enables CNNs to spontaneously defend against different types of attacks, e.g. attacks generated by Gaussian noise, fast gradient sign methods (Goodfellow et al., 2014) and a black-box attack(Narodytska & Kasiviswanathan, 2016).



rate research

Read More

This paper presents a DNN bottleneck reinforcement scheme to alleviate the vulnerability of Deep Neural Networks (DNN) against adversarial attacks. Typical DNN classifiers encode the input image into a compressed latent representation more suitable for inference. This information bottleneck makes a trade-off between the image-specific structure and class-specific information in an image. By reinforcing the former while maintaining the latter, any redundant information, be it adversarial or not, should be removed from the latent representation. Hence, this paper proposes to jointly train an auto-encoder (AE) sharing the same encoding weights with the visual classifier. In order to reinforce the information bottleneck, we introduce the multi-scale low-pass objective and multi-scale high-frequency communication for better frequency steering in the network. Unlike existing approaches, our scheme is the first reforming defense per se which keeps the classifier structure untouched without appending any pre-processing head and is trained with clean images only. Extensive experiments on MNIST, CIFAR-10 and ImageNet demonstrate the strong defense of our method against various adversarial attacks.
Deep neural networks (DNNs) are vulnerable to adversarial noise. Their adversarial robustness can be improved by exploiting adversarial examples. However, given the continuously evolving attacks, models trained on seen types of adversarial examples generally cannot generalize well to unseen types of adversarial examples. To solve this problem, in this paper, we propose to remove adversarial noise by learning generalizable invariant features across attacks which maintain semantic classification information. Specifically, we introduce an adversarial feature learning mechanism to disentangle invariant features from adversarial noise. A normalization term has been proposed in the encoded space of the attack-invariant features to address the bias issue between the seen and unseen types of attacks. Empirical evaluations demonstrate that our method could provide better protection in comparison to previous state-of-the-art approaches, especially against unseen types of attacks and adaptive attacks.
Many deep learning algorithms can be easily fooled with simple adversarial examples. To address the limitations of existing defenses, we devised a probabilistic framework that can generate an exponentially large ensemble of models from a single model with just a linear cost. This framework takes advantage of neural network depth and stochastically decides whether or not to insert noise removal operators such as VAEs between layers. We show empirically the important role that model gradients have when it comes to determining transferability of adversarial examples, and take advantage of this result to demonstrate that it is possible to train models with limited adversarial attack transferability. Additionally, we propose a detection method based on metric learning in order to detect adversarial examples that have no hope of being cleaned of maliciously engineered noise.
This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the perturbations to get rid of high frequency artefacts. In this work, smoothing has a different meaning as it perceptually shapes the perturbation according to the visual content of the image to be attacked. The perturbation becomes locally smooth on the flat areas of the input image, but it may be noisy on its textured areas and sharp across its edges. This operation relies on Laplacian smoothing, well-known in graph signal processing, which we integrate in the attack pipeline. We benchmark several attacks with and without smoothing under a white-box scenario and evaluate their transferability. Despite the additional constraint of smoothness, our attack has the same probability of success at lower distortion.
Modern neural networks excel at image classification, yet they remain vulnerable to common image corruptions such as blur, speckle noise or fog. Recent methods that focus on this problem, such as AugMix and DeepAugment, introduce defenses that operate in expectation over a distribution of image corruptions. In contrast, the literature on $ell_p$-norm bounded perturbations focuses on defenses against worst-case corruptions. In this work, we reconcile both approaches by proposing AdversarialAugment, a technique which optimizes the parameters of image-to-image models to generate adversarially corrupted augmented images. We theoretically motivate our method and give sufficient conditions for the consistency of its idealized version as well as that of DeepAugment. Our classifiers improve upon the state-of-the-art on common image corruption benchmarks conducted in expectation on CIFAR-10-C and improve worst-case performance against $ell_p$-norm bounded perturbations on both CIFAR-10 and ImageNet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا