Do you want to publish a course? Click here

Smooth Adversarial Examples

105   0   0.0 ( 0 )
 Added by Yannis Avrithis
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the perturbations to get rid of high frequency artefacts. In this work, smoothing has a different meaning as it perceptually shapes the perturbation according to the visual content of the image to be attacked. The perturbation becomes locally smooth on the flat areas of the input image, but it may be noisy on its textured areas and sharp across its edges. This operation relies on Laplacian smoothing, well-known in graph signal processing, which we integrate in the attack pipeline. We benchmark several attacks with and without smoothing under a white-box scenario and evaluate their transferability. Despite the additional constraint of smoothness, our attack has the same probability of success at lower distortion.

rate research

Read More

There has been a rise in the use of Machine Learning as a Service (MLaaS) Vision APIs as they offer multiple services including pre-built models and algorithms, which otherwise take a huge amount of resources if built from scratch. As these APIs get deployed for high-stakes applications, its very important that they are robust to different manipulations. Recent works have only focused on typical adversarial attacks when evaluating the robustness of vision APIs. We propose two new aspects of adversarial image generation methods and evaluate them on the robustness of Google Cloud Vision APIs optical character recognition service and object detection APIs deployed in real-world settings such as sightengine.com, picpurify.com, Google Cloud Vision API, and Microsoft Azures Computer Vision API. Specifically, we go beyond the conventional small-noise adversarial attacks and introduce secret embedding and transparent adversarial examples as a simpler way to evaluate robustness. These methods are so straightforward that even non-specialists can craft such attacks. As a result, they pose a serious threat where APIs are used for high-stakes applications. Our transparent adversarial examples successfully evade state-of-the art object detections APIs such as Azure Cloud Vision (attack success rate 52%) and Google Cloud Vision (attack success rate 36%). 90% of the images have a secret embedded text that successfully fools the vision of time-limited humans but is detected by Google Cloud Vision APIs optical character recognition. Complementing to current research, our results provide simple but unconventional methods on robustness evaluation.
Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.
79 - Ali Borji 2020
Deep learning has come a long way and has enjoyed an unprecedented success. Despite high accuracy, however, deep models are brittle and are easily fooled by imperceptible adversarial perturbations. In contrast to common inference-time attacks, Backdoor (aka Trojan) attacks target the training phase of model construction, and are extremely difficult to combat since a) the model behaves normally on a pristine testing set and b) the augmented perturbations can be minute and may only affect few training samples. Here, I propose a new method to tell whether a model has been subject to a backdoor attack. The idea is to generate adversarial examples, targeted or untargeted, using conventional attacks such as FGSM and then feed them back to the classifier. By computing the statistics (here simply mean maps) of the images in different categories and comparing them with the statistics of a reference model, it is possible to visually locate the perturbed regions and unveil the attack.
Deep neural networks have been proved that they are vulnerable to adversarial examples, which are generated by adding human-imperceptible perturbations to images. To defend these adversarial examples, various detection based methods have been proposed. However, most of them perform poorly on detecting adversarial examples with extremely slight perturbations. By exploring these adversarial examples, we find that there exists compliance between perturbations and prediction confidence, which guides us to detect few-perturbation attacks from the aspect of prediction confidence. To detect both few-perturbation attacks and large-perturbation attacks, we propose a method beyond image space by a two-stream architecture, in which the image stream focuses on the pixel artifacts and the gradient stream copes with the confidence artifacts. The experimental results show that the proposed method outperforms the existing methods under oblivious attacks and is verified effective to defend omniscient attacks as well.
Research into adversarial examples (AE) has developed rapidly, yet static adversarial patches are still the main technique for conducting attacks in the real world, despite being obvious, semi-permanent and unmodifiable once deployed. In this paper, we propose Short-Lived Adversarial Perturbations (SLAP), a novel technique that allows adversaries to realize physically robust real-world AE by using a light projector. Attackers can project a specifically crafted adversarial perturbation onto a real-world object, transforming it into an AE. This allows the adversary greater control over the attack compared to adversarial patches: (i) projections can be dynamically turned on and off or modified at will, (ii) projections do not suffer from the locality constraint imposed by patches, making them harder to detect. We study the feasibility of SLAP in the self-driving scenario, targeting both object detector and traffic sign recognition tasks, focusing on the detection of stop signs. We conduct experiments in a variety of ambient light conditions, including outdoors, showing how in non-bright settings the proposed method generates AE that are extremely robust, causing misclassifications on state-of-the-art networks with up to 99% success rate for a variety of angles and distances. We also demostrate that SLAP-generated AE do not present detectable behaviours seen in adversarial patches and therefore bypass SentiNet, a physical AE detection method. We evaluate other defences including an adaptive defender using adversarial learning which is able to thwart the attack effectiveness up to 80% even in favourable attacker conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا