No Arabic abstract
We develop the methodology and a detailed case study in use of a class of Bayesian predictive synthesis (BPS) models for multivariate time series forecasting. This extends the recently introduced foundational framework of BPS to the multivariate setting, with detailed application in the topical and challenging context of multi-step macroeconomic forecasting in a monetary policy setting. BPS evaluates-- sequentially and adaptively over time-- varying forecast biases and facets of miscalibration of individual forecast densities, and-- critically-- of time-varying inter-dependencies among them over multiple series. We develop new BPS methodology for a specific subclass of the dynamic multivariate latent factor models implied by BPS theory. Structured dynamic latent factor BPS is here motivated by the application context-- sequential forecasting of multiple US macroeconomic time series with forecasts generated from several traditional econometric time series models. The case study highlights the potential of BPS to improve of forecasts of multiple series at multiple forecast horizons, and its use in learning dynamic relationships among forecasting models or agents.
We discuss model and forecast combination in time series forecasting. A foundational Bayesian perspective based on agent opinion analysis theory defines a new framework for density forecast combination, and encompasses several existing forecast pooling methods. We develop a novel class of dynamic latent factor models for time series forecast synthesis; simulation-based computation enables implementation. These models can dynamically adapt to time-varying biases, miscalibration and inter-dependencies among multiple models or forecasters. A macroeconomic forecasting study highlights the dynamic relationships among synthesized forecast densities, as well as the potential for improved forecast accuracy at multiple horizons.
We consider the problem of multivariate density deconvolution when the interest lies in estimating the distribution of a vector-valued random variable but precise measurements of the variable of interest are not available, observations being contaminated with additive measurement errors. The existing sparse literature on the problem assumes the density of the measurement errors to be completely known. We propose robust Bayesian semiparametric multivariate deconvolution approaches when the measurement error density is not known but replicated proxies are available for each unobserved value of the random vector. Additionally, we allow the variability of the measurement errors to depend on the associated unobserved value of the vector of interest through unknown relationships which also automatically includes the case of multivariate multiplicative measurement errors. Basic properties of finite mixture models, multivariate normal kernels and exchangeable priors are exploited in many novel ways to meet the modeling and computational challenges. Theoretical results that show the flexibility of the proposed methods are provided. We illustrate the efficiency of the proposed methods in recovering the true density of interest through simulation experiments. The methodology is applied to estimate the joint consumption pattern of different dietary components from contaminated 24 hour recalls.
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. We introduce a notion of conditional independence between random functions, and construct a framework for Bayesian inference of undirected, decomposable graphs in the multivariate functional data context. This framework is based on extending Markov distributions and hyper Markov laws from random variables to random processes, providing a principled alternative to naive application of multivariate methods to discretized functional data. Markov properties facilitate the composition of likelihoods and priors according to the decomposition of a graph. Our focus is on Gaussian process graphical models using orthogonal basis expansions. We propose a hyper-inverse-Wishart-process prior for the covariance kernels of the infinite coefficient sequences of the basis expansion, establish existence, uniqueness, strong hyper Markov property, and conjugacy. Stochastic search Markov chain Monte Carlo algorithms are developed for posterior inference, assessed through simulations, and applied to a study of brain activity and alcoholism.
Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices. We develop a Bayesian method to incorporate covariate information in this GGMs setup in a nonlinear seemingly unrelated regression framework. We propose a joint predictor and graph selection model and develop an efficient collapsed Gibbs sampler algorithm to search the joint model space. Furthermore, we investigate its theoretical variable selection properties. We demonstrate our method on a variety of simulated data, concluding with a real data set from the TCPA project.
It has become increasingly common to collect high-dimensional binary data; for example, with the emergence of new sampling techniques in ecology. In smaller dimensions, multivariate probit (MVP) models are routinely used for inferences. However, algorithms for fitting such models face issues in scaling up to high dimensions due to the intractability of the likelihood, involving an integral over a multivariate normal distribution having no analytic form. Although a variety of algorithms have been proposed to approximate this intractable integral, these approaches are difficult to implement and/or inaccurate in high dimensions. We propose a two-stage Bayesian approach for inference on model parameters while taking care of the uncertainty propagation between the stages. We use the special structure of latent Gaussian models to reduce the highly expensive computation involved in joint parameter estimation to focus inference on marginal distributions of model parameters. This essentially makes the method embarrassingly parallel for both stages. We illustrate performance in simulations and applications to joint species distribution modeling in ecology.