Do you want to publish a course? Click here

The ALICE trigger system for LHC Run 3

345   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ALICE Central Trigger Processor (CTP) is going to be upgraded for LHC Run 3 with completely new hardware and a new Trigger and Timing Control (TTC-PON) system based on a Passive Optical Network (PON) system. The new trigger system has been designed as dead time free and able to transmit trigger data at 9.6 Gbps. A new universal trigger board has been designed, where by changing the FMC card, it can function as a CTP or as a LTU. It is based on the Xilinx Kintex Ultrascale FPGA and upgraded TTC-PON. The new trigger system and the prototype of the trigger board will be presented.



rate research

Read More

This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.
164 - O. Bourrion 2010
The ALICE experiment at the LHC is equipped with an electromagnetic calorimeter (EMCal) designed to enhance its capabilities for jet measurement. In addition, the EMCal enables triggering on high energy jets. Based on the previous development made for the Photon Spectrometer (PHOS) level-0 trigger, a specific electronic upgrade was designed in order to allow fast triggering on high energy jets (level-1). This development was made possible by using the latest generation of FPGAs which can deal with the instantaneous incoming data rate of 26 Gbit/s and process it in less than 4 {mu}s.
I present the current status of the D0 trigger system in Run II at the Tevatron.
The ALICE experiment at the LHC is equipped with an electromagnetic calorimeter (EMCal) designed to enhance its capabilities for jet, photon and electron measurement. In addition, the EMCal enables triggering on jets and photons with a centrality dependent energy threshold. After its commissioning in 2010, the EMCal Level 1 (L1) trigger was officially approved for physics data taking in 2011. After describing the L1 hardware and trigger algorithms, the commissioning and the first year of running experience, both in proton and heavy ion beams, are reviewed. Additionally, the upgrades to the original L1 trigger design are detailed.
94 - R. Aaij , M. Adinolfi , S. Aiola 2021
The LHCb experiment at CERN is undergoing an upgrade in preparation for the Run 3 data taking period of the LHC. As part of this upgrade the trigger is moving to a fully software implementation operating at the LHC bunch crossing rate. We present an evaluation of a CPU-based and a GPU-based implementation of the first stage of the High Level Trigger. After a detailed comparison both options are found to be viable. This document summarizes the performance and implementation details of these options, the outcome of which has led to the choice of the GPU-based implementation as the baseline.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا