No Arabic abstract
Two important problems in studying the quantum black hole, namely the construction of the Hilbert space and the definition of the time evolution operator on such Hilbert space, are discussed using the de Sitter background field method for an observer far from the black hole. This is achieved through the ambient space formalism. Remarkably, in this approximation (distant observer), the theory preserves unitarity and analyticity, it is free from any infrared divergence, and it renders a quantum black hole entropy that turns out to be finite.
In the de Sitter ambient space formalism the massless fields, which include the linear gravity and massless minimally coupled scalar field, can be written in terms of two separate parts: a massless conformally coupled scalar field and a polarization tensor(-spinor) part. Therefore due to the massless conformally coupled scalar field, there exist an unique Bunch-Davies vacuum state for quantum field theory in the de Sitter space time. In the de Sitter ambient space formalism one can show that the massless fields with spin $sgeq 1$ are gauge invariant. By coupling the massless gauge spin-$2$ and the massless gauge spin-$3/2$ fields and using the super-symmetry algebra in de Sitter ambient space formalism, one can naturally construct a unitary de Sitter super-gravity on Bunch-Davies vacuum state.
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compute the greybody factors for gravitons, photons, and conformal-coupling massless scalar particles by using the analytic solutions of the Teukolsky equation in the Kerr-de Sitter background. It turns out that the cosmological constant quenches the amplification factor and it approaches to zero towards the critical point where the Nariai and extremal limits merge together. We confirm that even near the critical point, the superradiance of gravitons is more significant than that of photons and scalar particles. Angular momentum is carried out by particles several times faster than mass energy decreases. This means that a Kerr-de Sitter black hole rapidly spins down to a nearly Schwarzschild-de Sitter black hole before it completely evaporates. We also compute the time evolution of the Bekenstein-Hawking entropy. The total entropy of the Kerr-de Sitter black hole and cosmological horizon increases with time, which is consistent with the generalized second law of thermodynamics.
Based on the consideration that the black hole horizon and the cosmological horizon of Kerr-de Sitter black hole are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the correlations between the two horizons, except for the sum of the two horizon entropies. By employing globally effective first law and effective thermodynamic quantities, we obtain the corrected total entropy and find that the region of stable state for kerr-de Sitter is related to the angular velocity parameter $a$, i.e., the region of stable state becomes bigger as the rotating parameters $a$ is increases.
We obtain the Kerr-anti-de-sitter (Kerr-AdS) and Kerr-de-sitter (Kerr-dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman-Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation $g_{rr}=0$, we derive the relation between the perfect fluid dark matter parameter $alpha$ and the cosmological constant $Lambda$ when the cosmological horizon $r_{Lambda}$ exists. For $Lambda=0$, we find that $alpha$ is in the range $0<alpha<2M$ for $alpha>0$ and $-7.18M<alpha<0$ for $alpha<0$. For positive cosmological constant $Lambda$ (Kerr-AdS BH), $alpha_{max}$ decreases if $alpha>0$, and $alpha_{min}$ increases if $alpha<0$. For negative cosmological constant $-Lambda$ (Kerr-dS BH), $alpha_{max}$ increases if $alpha>0$ and $alpha_{min}$ decreases if $alpha<0$; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for $alpha>0$ and $alpha<0$, while decreasing with the increasing $midalphamid$. When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton-Jacobi formalism and find that when $alpha$ is in the above ranges for $Lambda=0$, stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different $alpha$ and the black hole spin $a$. It is asymptotically flat and independent of $alpha$ if $alpha>0$ while is asymptotically flat only when $alpha$ is close to zero if $alpha<0$.
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit space for Anti-de Sitter space (AdS) explicitely. In the case of AdS$_3$, we found a variety of black hole structure, and in the case of AdS$_5$, we found a static four-dimensional black hole, and a spacetime which has two-dimensional black hole as a submanifold.